Home /Search
Search datasets
We have found 590 datasets for the keyword " biologie marine". You can continue exploring the search results in the list below.
Datasets: 100,295
Contributors: 42
Results
590 Datasets, Page 1 of 59
Year-round utilization of sea ice-associated carbon in Arctic ecosystems
This record contains a comprehensive synthesis of previously published highly branched isoprenoid (HBI) results, providing a quantitative spatial and temporal assessment of carbon partitioning within the Arctic marine ecosystem and validating estimates of sea-ice particulate organic carbon (iPOC) values as quantitative predictors of ice algal carbon in Arctic food webs.This publication was a collaborative effort with the following contributors: David Yurkowski (Fisheries and Oceans Canada), Lisa Loseto (Fisheries and Oceans Canada), Steve Ferguson (Fisheries and Oceans Canada), Bruno Rosenberg (Fisheries and Oceans Canada), C.W. Koch (Natural History Museum, London, UK; University of Maryland Center for Environmental Science, Maryland, US); T.A. Brown (Scottish Association for Marine Science, Oban, Scotland); R. Amiraux (Centre for Earth Observation Science, University of Manitoba, Canada); C. Ruiz-Gonzalez (Scottish Association for Marine Science, Oban, Scotland); M. Maccorquodale (Scottish Association for Marine Science, Oban, Scotland); G. Yunda-Guarin (Québec-Océan and Takuvik, Biology Department, Laval University, Canada); D. Kohlbach (Norwegian Polar Institute, Fram Centre, Tromsø, Norway); N.E. Hussey (Integrative Biology, University of Windsor, Ontario, Canada).
Pelagic Marine Ecounits - Coastal Resource Information Management System (CRIMS)
Pelagic Marine Ecounits are intended to describe the sea surface and water column. Two variables were selected to derive pelagic ecounits:1. Salinity and 2. Stratification. The British Columbia Marine Ecological Classification (BCMEC) is a hierarchical classification that delineates Provincial marine areas into Ecozones, Ecoprovinces, Ecoregions and Ecosections. The classification was developed from previous Federal and Provincial marine ecological classifications which were based on 1:2,000,000 scale information. The BCMEC has been developed for marine and coastal planning, resource management and a Provincial marine protected areas strategy. A new, smaller level of classification termed ecounits developed using 1:250,000 scale depth, current, exposure, subsurface relief and substrate was created to verify the larger ecosections, and to delineate their boundaries. CRIMS is a legacy dataset of BC coastal resource data that was acquired in a systematic and synoptic manner from 1979 and was intermittently updated throughout the years. Resource information was collected in nine study areas using a peer-reviewed provincial Resource Information Standards Committee consisting of DFO Fishery Officers, First Nations, and other subject matter experts. There are currently no plans to update this legacy data.
Northern marine coastal and ecosystem studies in the Canadian Beaufort Sea—sampling information
The objective of this project was to gather data to develop a model of the food web of the lower trophic levels of the nearshore area of the Beaufort Sea. Sampling took place from 2005 to 2008 using the CCGS Nahidik. The multidisciplinary character of the Nahidik program produced measurements of biology/ecology (primary production, phytoplankton, zooplankton, benthos, fish), chemical and physical oceanography, contaminants, geology and hydro acoustics. The data were collected in July and August of each year. The Nahidik program provided data to provide a baseline for future studies as well as an information source for environmental assessment.
Northern Marine Coastal and Ecosystem Studies in the Canadian Beaufort Sea—sample locations
The objective of this project was to gather data to develop a model of the food web of the lower trophic levels of the nearshore area of the Beaufort Sea. Sampling took place from 2005 to 2008 using the CCGS Nahidik. The multidisciplinary character of the Nahidik program produced measurements of biology/ecology (primary production, phytoplankton, zooplankton, benthos, fish), chemical and physical oceanography, contaminants, geology and hydro acoustics. The data were collected in July and August of each year. The Nahidik program provided data to provide a baseline for future studies as well as an information source for environmental assessment. This record contains the geographic coordinates and station names from 2005 to 2008.
Northern marine coastal and ecosystem studies in the Canadian Beaufort Sea—water quality data
The objective of this project was to gather data to develop a model of the food web of the lower trophic levels of the nearshore area of the Beaufort Sea. Sampling took place from 2005 to 2008 using the CCGS Nahidik. The multidisciplinary character of the Nahidik program produced measurements of biology/ecology (primary production, phytoplankton, zooplankton, benthos, fish), chemical and physical oceanography, contaminants, geology and hydro acoustics. The data were collected in July and August of each year. The Nahidik program provided data to provide a baseline for future studies as well as an information source for environmental assessment.This record contains water chemistry data collected as part of this project including suspended nitrogen, dissolved nitrogen, suspended phosphorus, dissolved phosphorus, dissolved organic carbon, suspended carbon, chlorophyll a, and suspended silicon.
Offshore Ecological and Human Use Information considered in Marine Protected Area Network Design in the Scotian Shelf Bioregion
In 2016-17, DFO Maritimes Region undertook a Marine Protected Area (MPA) network analysis for the Scotian Shelf-Bay of Fundy Bioregion. The analysis considered available bioregional-scale ecological and human use data in an effort to identify a draft MPA network design that would protect biodiversity while minimizing any potential impacts on commercial fishing and other industries. The data layers used for the offshore component of the MPA network analysis are provided here. These layers are not presented in their original forms and were modified (e.g. clipped, reclassified, etc.) specifically for use in the MPA network analysis. They should not be used for any other purpose. Please see Serdynska et al. 2021 for details on how each layer was created.Serdynska, A.R., Pardy, G.S., and King, M.C. 2021. Offshore Ecological and Human Use Information considered in Marine Protected Area Network Design in the Scotian Shelf Bioregion. Can. Tech. Rep. Fish. Aquat. Sci. 3382: xi + 100 p. https://publications.gc.ca/collections/collection_2021/mpo-dfo/Fs97-6-3382-eng.pdfCite this data as: Serdynska, A.R., Pardy, G.S., and King, M.C. Data of: Offshore Ecological and Human Use Information considered in Marine Protected Area Network Design in the Scotian Shelf Bioregion. Published: January 2022. Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/2d9cce9a-d634-4b49-879f-87c40c52acf2
eDNA metabarcoding enriches traditional trawl survey data for monitoring biodiversity in the marine environment
Marine Protected Areas require comprehensive monitoring to ensure objectives are achieved; however, monitoring natural ecosystems at scale is challenged by the biodiversity it aims to measure. Environmental DNA (eDNA) metabarcoding holds promise to address this monitoring challenge. We conducted paired sampling at 54 sites for fish and invertebrate assemblages in the Northwest Atlantic using groundfish trawls and eDNA metabarcoding of benthic seawater using four genetic markers (12S rRNA, 16S rRNA, 18S rRNA, and CO1). Compared to trawling, eDNA detected similar patterns of species turnover, larger estimates of gamma diversity, and smaller estimates of alpha diversity. A total of 63.6% (42/66) of fish species captured by trawling were detected by eDNA, along with an additional 26 species. Of the 24 missed detections by eDNA, 12 were inevitable as they lacked reference sequences. Excluding taxa assigned to higher than species level and those without a species name, 23.6% (17/72) of invertebrate species captured by trawling were detected by CO1, which detected an additional 98 species. We demonstrate that eDNA is capable of detecting patterns of community assemblage and species turnover in an offshore environment, emphasizing its strong potential for a non-invasive, comprehensive, and scalable tool for biodiversity monitoring supporting marine conservation programmes.Cite this data as: Jeffery, N., Rubidge, E., Abbott, C., Westfall, K., Stanley, R. (2024): Data of: eDNA metabarcoding enriches traditional trawl survey data for monitoring biodiversity in the marine environment.Published: August 2024. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/43a91ba7-8025-4330-88db-db14022d729d
MBON Pole to Pole: Sandy beach biodiversity of southwest New Brunswick, Canada
The Marine Biodiversity Observation Network Pole to Pole (MBON P2P) effort seeks to develop a framework for the collection, use and sharing of marine biodiversity data in a coordinated, standardized manner leveraging on existing infrastructure managed by the Global Ocean Observing System (GOOS; IOC-UNESCO), the GEO Biodiversity Observation Network (GEO BON), and the Ocean Biogeographic Information System (OBIS). The MBON Pole to Pole aims to become a key resource for decision-making and management of living resource across countries in the Americas for reporting requirements under the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES), Aichi Targets of the Convention of Biological Diversity (CBD), and the UN 2030 Agenda for Sustainable Development Goals (SDGs).This collection corresponds to the species registered on sandy beaches of the Musquash Harbour, Mispec Bay, and New River Beach, New Brunswick, Canada, using the MBON P2P sampling protocol for sandy beaches, with funding from the Government of Canada's Coastal Environmental Baseline Program.Citation: Reinhart B (2024). MBON POLE TO POLE: SANDY BEACH BIODIVERSITY OF SOUTHWEST NEW BRUNSWICK, CANADA. Version 1.5. Caribbean OBIS Node. Samplingevent dataset. https://ipt.iobis.org/mbon/resource?r=sandybeachesbayoffundynb&v=1.5
Evaluating an Autonomous eDNA Sampler for Marine Environmental Monitoring: Short- and Long-Term Applications
We evaluated an autonomous environmental DNA sampler produced by Dartmouth Ocean Technologies Inc (Dartmouth, Canada) compared to time-at-sample filtration in the laboratory to determine the performance of moored samplers for monitoring in the marine world. We deployed three autonomous samplers from DOT in the Bedford Basin (Canada) over a nine-week period in summer/fall 2023. The samplers filtered seawater in situ at programmed interviews over this time period, and we collected contemporaneous samples with a standard vacuum pump during each sampling period. Both eDNA sample types captured similar fish diversity, including typical diversity for the Northwest Atlantic. The invertebrate community detected using the COI marker was different between each sample type, likely due to differences in filter pore size. We found biofouling on the moored samplers was minimal over the study period, even in a high-traffic area such as the Bedford Basin, likely due to the relatively short experimental period, and copper screening covering in the inlet and outlet valves of the instruments. Overall, our results show promise to deploy autonomous eDNA samplers in marine conservation areas to contribute to monitoring in the temperate ocean, but further testing over longer periods of time is needed to determine if DNA remains well-preserved in the autonomous samplers at ambient ocean temperatures.Cite this data as: Jeffery, N.W., Van Wyngaarden, M., and Stanley, R.R.E. Evaluating an Autonomous eDNA Sampler for Marine Environmental Monitoring: Short- and Long-Term Applications. Published: December 2024. Coastal Ecosystems Science Division, Maritimes Region, Fisheries and Oceans Canada, Dartmouth NS.
Coastal Environmental Baseline Program (Maritimes Region), Northwest Fundy Shores conductivity, temperature and depth data
The Coastal Environmental Baseline Program is a multi-year Fisheries and Oceans Canada initiative designed to work with Indigenous and local communities and other key parties to collect coastal environmental data at a series of sites across Canada, to build a better understanding of existing marine ecological conditions. The program began data collection in 2019, and with the onset of Phase 2 in 2023, the Maritimes region study area was expanded and renamed ‘Northwest Fundy Shores’. A physical oceanography program was designed to align with the oceanographic interests and data needs of local interest holders. Starting in 2023, oceanographic parameters including water temperature, salinity, depth and turbidity have been monitored at a series of locations in Passamaquoddy Bay, the St. Croix River, and along the Bay of Fundy coast, including the Musquash estuary Marine Protected Area (MPA). This dataset includes seasonal CTD (conductivity, temperature and depth) and turbidity data starting in spring 2023. Instruments are maintained through the winter months at a limited number of sites. Data collection methods are primarily moored instruments on the bottom in water depths of 5-90 meters, and a few buoyant surface floats. Overall, this dataset captures seasonal dynamics in near-shore marine environments in Passamaquoddy Bay, the St Croix River, the Bay of Fundy and the Musquash MPA. Cite this data as: Coastal Environmental Baseline Program (Maritimes Region), Northwest Fundy Shores conductivity, temperature and depth data. Published in May 2025. Coastal Environmental Baseline Program. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, St. Andrews, N.B. 14-02-2025
Tell us what you think!
GEO.ca is committed to open dialogue and community building around location-based issues and
topics that matter to you.
Please send us your feedback