Home /Search
Search datasets
We have found 829 datasets for the keyword " climate". You can continue exploring the search results in the list below.
Datasets: 91,529
Contributors: 41
Results
829 Datasets, Page 1 of 83
Climate
Climate
HOT2000 Climate Map
The HOT2000 software contains monthly and annual climate data for 403 locations in Canada. Boundary lines for HOT2000 climate zones were defined through spatial interpolation of the annual Celsius heating degree-days for each weather station. In a number of instances, the positions of boundary lines may not be representative of the local climate conditions due to lack of appropriate climate data. Each HOT2000 climate zone contains one weather station to be used for all locations within the zone. Climate data represent 20-year averaged data from 1998 to 2017 for locations south of 58° latitude and 13-year averaged data from 2005 to 2017 for locations north of 58° latitude. Note that Whistler, BC uses 13 years of data.The following information is available in the climate map:o Location: the name of the weather station.o Region: the provincial or territorial location of the weather station.o Latitude: measured in degrees north of the equator.o Annual heating degree-days using a base of 18 °C.o Design heating dry bulb temperature (°C): the 2.5% January design temperature used to calculate the design heat loss for the house.o Design cooling dry bulb temperature (°C): the 2.5% July design temperature used to calculate the design cooling load for the house.o Design cooling wet bulb temperature (°C): the 2.5% July design temperature used to calculate the design cooling load for the house.The climate map is intended to be used by all users of the HOT2000 software under the EnerGuide Rating System, including energy advisors, service organizations, regulatory agencies, builders, utilities, and all levels of government.The weather locations and climate data are based on Environment and Climate Change Canada data, specifically the Canadian Weather Energy and Engineering Datasets (CWEEDS).
Statistically downscaled climate scenarios from CMIP6 global climate models (CanDCS-U6 & CanDCS-M6)
Environment and Climate Change Canada’s (ECCC) Climate Research Division (CRD) and the Pacific Climate Impacts Consortium (PCIC) previously produced statistically downscaled climate scenarios based on simulations from climate models that participated in the Coupled Model Intercomparison Project phase 5 (CMIP5) in 2015. ECCC and PCIC have now updated the CMIP5-based downscaled scenarios with two new sets of downscaled scenarios based on the next generation of climate projections from the Coupled Model Intercomparison Project phase 6 (CMIP6). The scenarios are named Canadian Downscaled Climate Scenarios–Univariate method from CMIP6 (CanDCS-U6) and Canadian Downscaled Climate Scenarios–Multivariate method from CMIP6 (CanDCS-M6).CMIP6 climate projections are based on both updated global climate models and new emissions scenarios called “Shared Socioeconomic Pathways” (SSPs). Statistically downscaled datasets have been produced from 26 CMIP6 global climate models (GCMs) under three different emission scenarios (i.e., SSP1-2.6, SSP2-4.5, and SSP5-8.5), with PCIC later adding SSP3-7.0 to the CanDCS-M6 dataset. The CanDCS-U6 was downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2) procedure, and CanDCS-M6 was downscaled using the N-dimensional Multivariate Bias Correction (MBCn) method. The CanDCS-U6 dataset was produced using the same downscaling target data (NRCANmet) as the CMIP5-based downscaled scenarios, while the CanDCS-M6 dataset implements a new target dataset (ANUSPLIN and PNWNAmet blended dataset).Statistically downscaled individual model output and ensembles are available for download. Downscaled climate indices are available across Canada at 10km grid spatial resolution for the 1950-2014 historical period and for the 2015-2100 period following each of the three emission scenarios.Note: projected future changes by statistically downscaled products are not necessarily more credible than those by the underlying climate model outputs. In many cases, especially for absolute threshold-based indices, projections based on downscaled data have a smaller spread because of the removal of model biases. However, this is not the case for all indices. Downscaling from GCM resolution to the fine resolution needed for impacts assessment increases the level of spatial detail and temporal variability to better match observations. Since these adjustments are GCM dependent, the resulting indices could have a wider spread when computed from downscaled data as compared to those directly computed from GCM output. In the latter case, it is not the downscaling procedure that makes future projection more uncertain; rather, it is indicative of higher variability associated with finer spatial scale.Individual model datasets and all related derived products are subject to the terms of use (https://pcmdi.llnl.gov/CMIP6/TermsOfUse/TermsOfUse6-1.html) of the source organization.
Ecozones
This dataset is used for national and coarse-scale provincial reporting such as analyses of climate, demographics and watersheds.
Multi-model ensembles of CMIP6 global climate models
Multi-model ensembles for a suite of variables based on projections from Coupled Model Intercomparison Project Phase 6 (CMIP6) global climate models (GCMs) are available for 1850-2100 on a common 1x1 degree global grid. Climate projections vary across GCMs due to differences in the representation and approximation of earth systems and processes, and natural variability and uncertainty regarding future climate drivers. Thus, there is no single best climate model. Rather, using results from an ensemble of models (e.g., taking the average) is best practice, as an ensemble takes model uncertainty into account and provides more reliable climate projections.Provided on Canadian Climate Data and Scenarios (CCDS) are four types of products based on the CMIP6 multi-model ensembles: time series datasets and plots, maps and associated datasets, tabular datasets, and global gridded datasets. Monthly, seasonal, and annual ensembles are available for up to six Shared Socioeconomic Pathways (SSPs) (SSP1-1.9, SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP4-6.0, and SSP5-8.5), four future periods (near-term (2021-2040), mid-term (2041-2060 and 2061-2080), end of century (2081-2100)), and up to five percentiles (5th, 25th, 50th (median), 75th, and 95th) of the CMIP6 ensemble distribution. The number of models in each ensemble differs according to model availability for each SSP and variable, see the model list resource for details on the models included in each ensemble. The majority of products show projected changes expressed as anomalies according to a historical reference period of 1995-2014. The products provided include global, national, and provincial/territorial datasets and graphics. For more information on the CMIP6 multi-model ensembles, see the technical documentation resource.
Projected Temperature change based on CMIP5 multi-model ensembles
Seasonal and annual multi-model ensembles of projected change (also known as anomalies) in mean temperature (°C) based on an ensemble of twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Projected change in mean temperature (°C) is with respect to the reference period of 1986-2005. The 5th, 25th, 50th, 75th and 95th percentiles of the ensembles of projected change in mean temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in mean temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
CMIP5 Multi-model Ensembles of Temperature projections
Multi-model ensembles of mean temperature based on projections from twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the monthly, seasonal and annual ensembles of mean temperature (°C) are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
Projected Precipitation change based on CMIP5 multi-model ensembles
Seasonal and annual multi-model ensembles of projected relative change (also known as anomalies) in mean precipitation based on an ensemble of twenty-nine Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1901-2100. Projected relative change in mean precipitation is with respect to the reference period of 1986-2005 and expressed as a percentage (%). The 5th, 25th, 50th, 75th and 95th percentiles of the ensembles of mean precipitation change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in mean precipitation (%) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
Trend of Mean Temperature for 1948-2016 based on Canadian gridded data
Seasonal and annual trends of mean surface air temperature change (degrees Celsius) for 1948-2016 based on Canadian gridded data (CANGRD) are available at a 50km resolution across Canada. Temperature trends represent the departure from a mean reference period (1961-1990). CANGRD data are interpolated from adjusted and homogenized climate station data (i.e., AHCCD datasets). Homogenized climate data incorporate adjustments to the original station data to account for discontinuities from non-climatic factors, such as instrument changes or station relocation.
Trends of temperature change based on adjusted and homogenized climate station data
Monthly, seasonal and annual trends of daily minimum, mean and maximum surface air temperature change (degrees Celsius) based on homogenized station data (AHCCD) are available. Trends are calculated using the Theil-Sen method using the station’s full period of available data. The availability of temperature trends will vary by station; if more than 5 consecutive years are missing data or more than 10% of the data within the time series is missing, a trend was not calculated.
Tell us what you think!
GEO.ca is committed to open dialogue and community building around location-based issues and
topics that matter to you.
Please send us your feedback