Home /Search
Search datasets
We have found 1,181 datasets for the keyword " earth observation". You can continue exploring the search results in the list below.
Datasets: 91,529
Contributors: 41
Results
1,181 Datasets, Page 1 of 119
Root - EODMS Datacube API
The STAC API for NRCan's Earth Observation Database Management System (EODMS)..**This third party metadata element follows the Spatio Temporal Asset Catalog (STAC) specification.**
Root - EODMS Datacube API
The STAC API for NRCan's Earth Observation Database Management System (EODMS)..**This third party metadata element follows the Spatio Temporal Asset Catalog (STAC) specification.**
Root - EODMS Datacube API
The STAC API for NRCan's Earth Observation Database Management System (EODMS)..**This third party metadata element follows the Spatio Temporal Asset Catalog (STAC) specification.**
Multi-Spectral Clear-Sky Composites of MODIS/Terra Land Channels (B1 - B7) Over Canada at 250m Spatial Resolution, 2000-03-01 to 2013-01-10
The Moderate Resolution Imaging Spectroradiometer (MODIS ) is one of the most sophisticated sensors that is used in a wide range of applications related to land, ocean and atmosphere. It has 36 spectral channels with spatial resolution varying between 250 m and 1 km at nadir. MODIS channels 1 (B1, visible) and 2 (B2, near infrared) are available at 250 m spatial resolution, an additional five channels for terrestrial applications (bands B3 to B7) are available at 500 m spatial resolution, the other twenty-nine channels not included in this data set capture images with a spatial resolution of 1 km. The MODIS record begins in March 2000 and extends to present with daily measurements over the globe. This level 3 product for Canada was created from the following original Level 1 (1B) MODIS data (collection 5): a) MOD02QKM - Level 1B 250 m swath data, 5 min granules; b ) MOD02HKM - level 1B , 500 m swath data, 5 min granules; c) MOD03 - level 1 geolocation information, 1 km swath data, 5 min granules. All these data are available from the DAAC Earth Observing System Data Gateway (NASA http://ladsweb.nascom.nasa.gov/data/search.html). The terrestrial channels MODIS (B3 to B7) at 500 m spatial resolution were reduced to 250 m with an adaptive regression system and normalization described in Trishchenko et al. (2006, 2009), and the data were mapped using a Lambert Conformal Conic (LCC ) projection (Khlopenkov et al., 2008). These data were combined to form pan-Canadian images using a technique for detection of clear sky, clouds and cloud shadows with a maximum interval of 10 days (Luo et al., 2008). Atmospheric and sun-sensor geometry corrections have not been applied. For each date, data include forward and backward scattering observations as separate files. This allows data to be optimized for a given application. For general use, data from either forward or backward scattering or both should be used. Future release of the MODIS time series will correct the forward and backward scattering geometry to provide a single best observation for each pixel.
Canadian Wetland Inventory Map Version 3A (CWIM3A)
The third generation of high resolution 10-m wetland inventory map of Canada, covering an approximate area of one billion hectares, was generated using multi-year (2016-2020), multi-source imagery (Sentinel-1, Sentinel-2, ALOS PALSAR-2, and SRTM) Earth Observation (EO) data as well as environmental features. Over 8800 wetland polygons were processed within an object-based random forest classification scheme on the Google Earth Engine cloud computing platform. The average overall accuracy of 90.5% is an increase of 4.7% over CWIM2.CWIM Versions:The Canadian Wetland Inventory Map (CWIM) is an extension of work started at Memorial University to produce a Newfoundland and Labrador wetland inventory during 2015-2018 which was significantly funded by Environment and Climate Change Canada. The first national CWIM was produced 2018-2019 as a collaboration between Memorial University, C-CORE, and Natural Resources Canada. Dr. Brian Brisco was instrumental in connecting ground truth from multiple sources to the project and providing guidance. Version 2 was produced in 2020 which included more training data and processing by Canada’s ecozones rather than provinces to take advantage of the commonality of landscape ecological features within ecozones to improve the accuracy. Version 3 produced in 2021 continued adding more data sources to further improve accuracy specifically an overestimation of wetland area as well as introducing a confidence map. Version 3A completed in 2022 updates only the arctic ecozones due to their relatively lower accuracy and added hydro-physiographic data layers. Currently work is underway to create a northern circumpolar wetland inventory map to be published in 2025.Paper on Newfoundland and Labrador Wetland Inventory:Mahdianpari, M.; Salehi, B.; Mohammadimanesh, F.; Homayouni, S.; Gill, E. The First Wetland Inventory Map of Newfoundland at a Spatial Resolution of 10 m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Remote Sens. 2019, 11, 43. https://doi.org/10.3390/rs11010043Paper on CWIM1:Mahdianpari, M., Salehi, B., Mohammadimanesh, F., Brisco, B., Homayouni, S., Gill, E., … Bourgeau-Chavez, L. (2020). Big Data for a Big Country: The First Generation of Canadian Wetland Inventory Map at a Spatial Resolution of 10-m Using Sentinel-1 and Sentinel-2 Data on the Google Earth Engine Cloud Computing Platform. Canadian Journal of Remote Sensing, 46(1), 15–33. https://doi.org/10.1080/07038992.2019.1711366Paper on CWIM2:Mahdianpari, M., Brisco, B., Granger, J. E., Mohammadimanesh, F., Salehi, B., Banks, S., … Weng, Q. (2020). The Second Generation Canadian Wetland Inventory Map at 10 Meters Resolution Using Google Earth Engine. Canadian Journal of Remote Sensing, 46(3), 360–375. https://doi.org/10.1080/07038992.2020.1802584Paper on CWIM3:M. Mahdianpari et al., "The Third Generation of Pan-Canadian Wetland Map at 10 m Resolution Using Multisource Earth Observation Data on Cloud Computing Platform," in IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 14, pp. 8789-8803, 2021, doi: 10.1109/JSTARS.2021.3105645.Paper on Arctic ecoregion enhancement for CWIM3A:Michael Merchant, et al., ”Leveraging google earth engine cloud computing for large-scale arctic wetland mapping,” in International Journal of Applied Earth Observation and Geoinformation, vol. 125, 2023, https://doi.org/10.1016/j.jag.2023.103589.
Annual Crop Inventory 2013
In 2013, the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) repeated the process of generating annual crop inventory digital maps using satellite imagery to for all of Canada, in support of a national crop inventory. A Decision Tree (DT) based methodology was applied using optical (Landsat-8) and radar (RADARSAT-2) based satellite images, and having a final spatial resolution of 30m. In conjunction with satellite acquisitions, ground-truth information was provided by provincial crop insurance companies and point observations from the BC Ministry of Agriculture and our regional AAFC colleagues.
Annual Crop Inventory 2014
In 2014, the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) repeated the process of generating annual crop inventory digital maps using satellite imagery to for all of Canada, in support of a national crop inventory. A Decision Tree (DT) based methodology was applied using optical (Landsat-8) and radar (RADARSAT-2) based satellite images, and having a final spatial resolution of 30m. In conjunction with satellite acquisitions, ground-truth information was provided by provincial crop insurance companies and point observations from the BC Ministry of Agriculture and our regional AAFC colleagues.
Annual Crop Inventory 2015
In 2015, the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) repeated the process of generating annual crop inventory digital maps using satellite imagery to for all of Canada, in support of a national crop inventory. A Decision Tree (DT) based methodology was applied using optical (Landsat-8) and radar (RADARSAT-2) based satellite images, and having a final spatial resolution of 30m. In conjunction with satellite acquisitions, ground-truth information was provided by provincial crop insurance companies and point observations from the BC Ministry of Agriculture and our regional AAFC colleagues.
Annual Crop Inventory 2010
In 2010 the Earth Observation Team of the Science and Technology Branch (STB) at Agriculture and Agri-Food Canada (AAFC) continued the process of generating annual crop inventory digital maps using satellite imagery. Focusing on the Prairie Provinces, a Decision Tree (DT) based methodology was applied using both optical (AWiFS, Landsat-5, DMC) and radar (RADARSAT-2) based satellite imagery, and having a final spatial resolution of 56m. Methods were also developed to enhance the optical classification with RADARSAT-2 imagery, addressing issues associated with cloud cover. In conjunction with satellite acquisitions, ground-truth information was provided by provincial crop insurance companies and point observations from our regional AAFC colleagues. The overall process for Crop Inventory Map includes: satellite data acquisition; field data acquisition for classification training and accuracy assessment; and, operational implementation of the classification methodology.
14 Class - Canadian Ecological Domain Classification from Satellite Data
14 Class - Canadian Ecological Domain Classification from Satellite Data. Satellite derived data including 1) topography, 2) landscape productivity based on photosynthetic activity, and 3) land cover were used as inputs to create an environmental regionalization of the over 10 million km2 of Canada’s terrestrial land base. The outcomes of this clustering consists of three main outputs. An initial clustering of 100 classes was generated using a two-stage multivariate classification process. Next, an agglomerative hierarchy using a log-likelihood distance measure was applied to create a 40 and then a 14 class regionalization, aimed to meaningfully group ecologically similar components of Canada's terrestrial landscape. For more information (including a graphical illustration of the cluster hierarchy) and to cite this data please use: Coops, N.C., Wulder, M.A., Iwanicka, D. 2009. An environmental domain classification of Canada using earth observation data for biodiversity assessment. Ecological Informatics, Vol. 4, No. 1, Pp. 8-22, DOI: https://doi.org/10.1016/j.ecoinf.2008.09.005. ( Coops et al. 2009).
Tell us what you think!
GEO.ca is committed to open dialogue and community building around location-based issues and
topics that matter to you.
Please send us your feedback