Home /Search
Search datasets
We have found 90 datasets for the keyword " géochimie". You can continue exploring the search results in the list below.
Datasets: 91,529
Contributors: 41
Results
90 Datasets, Page 1 of 9
Lake Water Geochemistry
This dataset represents Lake Water Geochemical Analyses for the province of Saskatchewan.This dataset represents Lake Water Geochemical Analyses for the province of Saskatchewan. During the intense level of activity directed toward the exploration for uranium in the 1970s, the Saskatchewan Geological Survey and the Geological Survey of Canada funded the collection of several thousand samples of sediments and waters from lakes around the Athabasca Sandstone. All sediment samples were analyzed for U, Cu, Ni, Pb, Zn, Co, Fe and Mn. Selected samples were analyzed for a wide range of additional elements. All lake waters were analyzed for U, F-, and pH, and several hundred samples were analyzed for additional elements and parameters. The Summary Table that precedes this text shows the numbers of samples and elements, and the source of data from which the 8,939 samples listed in the 9 Tables are derived. Over 20 years ago the data in these listings were coded into the Saskatchewan Geological Survey’s ‘Geochemical Data File’, designed in the 1970s (Dunn, 1978b, 1979), and developed by SaskComp (the computer programming department of the Saskatchewan government at that time). The only database listed in the present report that was not in the Geochemical Data File was GSC Open File #779, jointly produced by the SGS and GSC (Coker and Dunn, 1981, 1983) and containing data from detailed surveys of the IAEA/NEA Athabasca Test Area (adjacent to Wollaston Lake). The old Geochemical Data File was state-of-the-art at the time, and data have been available for public scrutiny since inception in 1977. Demonstrations of the File were given at the SGS Open House meetings in 1977 and 1978. The explosive development of personal computers during the past 20 years has made the original Geochemical Data File something of a dinosaur, and the data have been difficult to access and manipulate. The present data file is a compilation that has resulted from detailed evaluation, streamlining, editing and breakdown of the data into simplified Excel files that can easily be manipulated by anyone with a modest knowledge of computers. These data are of historic value and their re-evaluation could assist in current uranium exploration programs. Of particular value is their use in environmental studies, since they represent a 1970s snapshot of the chemistry of the northern Saskatchewan environment prior to mine developments. At the start of sample collection in 1975 Key Lake had not been drained and the only mine site was the pit at Rabbit Lake. This compilation has divided the data into 9 tables, each presented as a shape file. There are 6 shape files of lake sediment data (1LS - 6LS) and 3 shape files of lake water data (4LW - 6LW). Lake water samples were from the same sites as the lake sediments listed in files 4LS - 6LS, hence they have been given the same numeric designation. The data are mostly compatible among the Tables. However, although analytical methods and quality control protocols were similar, they were sufficiently different to warrant treating the data as separate listings. For any regional plotting of data extracted from all Tables these differences should be considered when interpreting distribution patterns. Of particular relevance is that all sediment samples were analyzed for U by neutron activation, with the exception of 158 samples (Table 2LS) where determinations were by fluorometry. These data sets should be fully compatible, because the two techniques provide similar values. Comparison of U data from sediment samples collected and analyzed over four years, then reanalyzed as one batch has shown excellent precision and accuracy (Coker and Dunn, 1981). All U in water determinations were by fluorometry, and all F- by selective ion electrode. Loss on ignition (LOI) data were determined by ignition at 500o C for 4 hours. Table 1LS This data set comprises samples collected by SGS between 1975 and 1978. Samples were digested in aqua regia and all trace elements, except U (see above), were determined by atomic absorption spectrometry (AA). **Please Note – All published Saskatchewan Geological Survey datasets, including those available through the Saskatchewan Mining and Petroleum GeoAtlas, are sourced from the Enterprise GIS Data Warehouse. They are therefore identical and share the same refresh schedule.
Lake Sediment Geochemistry
This dataset represents Lake Sediment Geochemical Analyses for the province of Saskatchewan.This dataset represents Lake Sediment Geochemical Analyses for the province of Saskatchewan. During the intense level of activity directed toward the exploration for uranium in the 1970s, the Saskatchewan Geological Survey and the Geological Survey of Canada funded the collection of several thousand samples of sediments and waters from lakes around the Athabasca Sandstone. All sediment samples were analyzed for U, Cu, Ni, Pb, Zn, Co, Fe and Mn. Selected samples were analyzed for a wide range of additional elements. All lake waters were analyzed for U, F-, and pH, and several hundred samples were analyzed for additional elements and parameters. The Summary Table that precedes this text shows the numbers of samples and elements, and the source of data from which the 8,939 samples listed in the 9 Tables are derived. Over 20 years ago the data in these listings were coded into the Saskatchewan Geological Survey’s ‘Geochemical Data File’, designed in the 1970s (Dunn, 1978b, 1979), and developed by SaskComp (the computer programming department of the Saskatchewan government at that time). The only database listed in the present report that was not in the Geochemical Data File was GSC Open File #779, jointly produced by the SGS and GSC (Coker and Dunn, 1981, 1983) and containing data from detailed surveys of the IAEA/NEA Athabasca Test Area (adjacent to Wollaston Lake). The old Geochemical Data File was state-of-the-art at the time, and data have been available for public scrutiny since inception in 1977. Demonstrations of the File were given at the SGS Open House meetings in 1977 and 1978. The explosive development of personal computers during the past 20 years has made the original Geochemical Data File something of a dinosaur, and the data have been difficult to access and manipulate. The present data file is a compilation that has resulted from detailed evaluation, streamlining, editing and breakdown of the data into simplified Excel files that can easily be manipulated by anyone with a modest knowledge of computers. These data are of historic value and their re-evaluation could assist in current uranium exploration programs. Of particular value is their use in environmental studies, since they represent a 1970s snapshot of the chemistry of the northern Saskatchewan environment prior to mine developments. At the start of sample collection in 1975 Key Lake had not been drained and the only mine site was the pit at Rabbit Lake. This compilation has divided the data into 9 tables, each presented as a shape file. There are 6 shape files of lake sediment data (1LS - 6LS) and 3 shape files of lake water data (4LW - 6LW). Lake water samples were from the same sites as the lake sediments listed in files 4LS - 6LS, hence they have been given the same numeric designation. The data are mostly compatible among the Tables. However, although analytical methods and quality control protocols were similar, they were sufficiently different to warrant treating the data as separate listings. For any regional plotting of data extracted from all Tables these differences should be considered when interpreting distribution patterns. Of particular relevance is that all sediment samples were analyzed for U by neutron activation, with the exception of 158 samples (Table 2LS) where determinations were by fluorometry. These data sets should be fully compatible, because the two techniques provide similar values. Comparison of U data from sediment samples collected and analyzed over four years, then reanalyzed as one batch has shown excellent precision and accuracy (Coker and Dunn, 1981). All U in water determinations were by fluorometry, and all F- by selective ion electrode. Loss on ignition (LOI) data were determined by ignition at 500o C for 4 hours. Table 1LS This data set comprises samples collected by SGS between 1975 and 1978. Samples were digested in aqua regia and all trace elements, except U (see above), were determined by atomic absorption spectrometry (AA). **Please Note – All published Saskatchewan Geological Survey datasets, including those available through the Saskatchewan Mining and Petroleum GeoAtlas, are sourced from the Enterprise GIS Data Warehouse. They are therefore identical and share the same refresh schedule.
Geochemistry
Geochemistry includes information related to rock samples and sediment samples.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
Zooplankton data from central and northern Strait of Georgia
Zooplankton data collected during surveys conducted in the central and northern Strait of Georgia, 1996-2018.
Strait of Georgia Synoptic Bottom Trawl Survey
Catch, effort, location (latitude, longitude), relative abundance indices, and associated biological data from groundfish multi-species bottom trawl surveys in Strait of Georgia.IntroductionThe Strait of Georgia (SOG) synoptic bottom trawl survey was conducted in 2012 and 2015. This survey is one of a set of long-term and coordinated surveys that together cover the continental shelf and upper slope of most of the British Columbia coast. The other surveys are the Queen Charlotte Sound (QCS) survey, the Hecate Strait (HS) survey, the West Coast Vancouver Island (WCVI) survey and the West Coast Haida Gwaii (WCHG) survey. The survey was not impacted by the COVID-19 pandemic. The objectives of these surveys are to provide fishery independent abundance indices of all demersal fish species available to bottom trawling and to collect biological samples of selected species. The surveys follow a random depth-stratified design and the sampling units are 2 km by 2 km blocks. The synoptic bottom trawl surveys are conducted by Fisheries and Oceans Canada (DFO) in collaboration with the Canadian Groundfish Research and Conservation Society (CGRCS), a non-profit society composed of participants in the British Columbia commercial groundfish trawl fishery. The Queen Charlotte Sound and West Coast Haida Gwaii surveys are conducted under collaborative agreements, with the CGRCS providing chartered commercial fishing vessels and field technicians, while DFO provides in-kind contributions for running the surveys including personnel and equipment. The Hecate Strait, West Coast Vancouver Island, and Strait of Georgia surveys are conducted by DFO and have typically taken place on a Canadian Coast Guard research vessel. Until 2016 this vessel was the CCGS W.E. Ricker. From 2021 onwards, this vessel was the CCGS Sir John Franklin. In years when a coast guard vessel has not been available, the Hecate Strait, West Coast Vancouver Island, and Strait of Georgia surveys have taken place on chartered industry vessels. Data from these surveys are also presented in the groundfish data synopsis report (Anderson et al. 2019).EffortThis table contains information about the survey trips and fishing events (trawl tows/sets) that are part of this survey series. Trip-level information includes the year the survey took place, a unique trip identifier, the vessel that conducted the survey, and the trip start and end dates (the dates the vessel was away from the dock conducting the survey). Set-level information includes the date, time, location, and depth that fishing took place, as well as information that can be used to calculate fishing effort (duration) and swept area. All successful fishing events are included, regardless of what was caught.CatchThis table contains the catch information from successful fishing events. Catches are identified to species or to the lowest taxonomic level possible. Most catches are weighed, but some are too small (“trace” amounts) or too large (e.g. very large Big Skate). The unique trip identifier and set number are included so that catches can be related to the fishing event information (including capture location).BiologyThis table contains the available biological data for catches which were sampled. Data may include any or all of length, sex, weight, age. Different length types are measured depending on the species. Age structures are collected when possible for species where validated aging methods exist and are archived until required for an assessment; therefore, all existing structures have not been aged at this time. The unique trip identifier and set number are included so that samples can be related to the fishing event and catch information.BiomassThis table contains relative biomass indices of species that have been captured in every survey of the time series. The coefficient of variation and bootstrapped 95% confidence intervals are provided for each index. The groundfish data synopsis report (Anderson et al. 2019) provides an explanation of how the relative biomass indices are derived.
Notice of Work (NoW) Spatial Locations - Public
The dataset represents applications for a mining permit. This point dataset is for "regional mines”. Notice of Work (NoW) is the name of the application. Mining activities with disturbance to the ground need approval. Section 10 of the Mines Act issues the authorization or permit. **NOTE**: Administrative amendments to a NoW are not captured in this dataset. We are currently working to include this addition for a more complete view of the data. For proponents, please log into https://minespace.gov.bc.ca/ to confirm any authorizations on your permits. Polygon representation of this dataset can be found here: https://catalogue.data.gov.bc.ca/dataset/c728435d-410e-42f9-81d5-95978c90e44a Point locations within this dataset may be: - Approved and permitted NoW applications The application status field identifies the status of the application. Examples include approved, withdrawn, or rejected, to name a few. Clients submit location information with their application. During review and consultation phases of the application, the permitting inspector may adjust the proposed location. Otherwise, this dataset displays the information submitted by the client. Regional mines include: - Exploration — mineral, coal, rock quarry, industrial mineral or dimension stone - Sand and gravel — aggregate, rock or natural substances used for construction purposes - Placer Part 9.1.1 and 10.1.1 of the Health, Safety and Reclamation Code for Mines in British Columbia describe the requirements. Clients submit location information with their application. This dataset displays the information submitted by the client. Notice of work categories include type and application status: Type - Coal - Mineral - Placer Operations - Quarry – Construction Aggregate - Quarry – Industrial Mineral - Sand and Gravel Application Status - Approved - Client Delayed - Permit Closed - Pending Approval - Government Action Required - Referred - Rejected - Received - Rejected-Initial - No Permit Required - Referral Complete - Withdrawn For the public view, please be aware that the ministry has removed: - All points with now application status of pending verification. - The attributes of all non-open permits - All non-gold and non-jade/nephrite mine commodities
Ungulate Winter Range - Proposed
An Ungulate Winter Range (UWR) is defined as an area that contains habitat that is necessary to meet the winter habitat requirements of an ungulate species. UWRs are based on current understanding of ungulate habitat requirements in winter, as interpreted by FLNR regional staff from current scientific and management literature, local knowledge, and other expertise from the region. UWRs within this set of data are currently in the review and consultation stage of the area designation process. As UWRs are designated they will be moved into the [Approved Ungulate Winter Range](http://catalogue.data.gov.bc.ca/dataset/ungulate-winter-range) dataset.
Important Areas for Geography in Strait of Georgia Ecoregion
This layer details Important Areas (IAs) relevant to important geographic features in the Strait of Georgia (SOG) ecoregion. This data was mapped to inform the selection of marine Ecologically and Biologically Significant Areas (EBSA). Experts have indicated that these areas are relevant based upon their high ranking in one or more of three criteria (Uniqueness, Aggregation, and Fitness Consequences). The distribution of IAs within ecoregions is used in the designation of EBSAs.Canada’s Oceans Act provides the legislative framework for an integrated ecosystem approach to management in Canadian oceans, particularly in areas considered ecologically or biologically significant. DFO has developed general guidance for the identification of ecologically or biologically significant areas. The criteria for defining such areas include uniqueness, aggregation, fitness consequences, resilience, and naturalness. This science advisory process identifies proposed EBSAs in Canadian Pacific marine waters, specifically in the Strait of Georgia (SOG), along the west coast of Vancouver Island (WCVI, southern shelf ecoregion), and in the Pacific North Coast Integrated Management Area (PNCIMA, northern shelf ecoregion).Initial assessment of IAs in PNCIMA was carried out in September 2004 to March 2005 with spatial data collection coordinated by Cathryn Clarke. Subsequent efforts in WCVI and SOG were conducted in 2009, and may have used different scientific advisors, temporal extents, data, and assessment methods. WCVI and SOG IA assessment in some cases revisits data collected for PNCIMA, but should be treated as a separate effort.Other datasets in this series detail IAs for birds, cetaceans, coral and sponges, fish, invertebrates, and other vertebrates.Though data collection is considered complete, the emergence of significant new data may merit revisiting of IAs on a case by case basis.
FADM - Mountain Pine Beetle Salvage Area
Area delineating the Mountain Pine Beetle Salvage area
Street snow removal priorities
Priority for snow removal on the road network according to three service levels (1, 2 and 3) or under provincial jurisdiction (MTQ) .attributs:ID - Unique IdentifierPriority - Service Level or Provincial Jurisdiction (MTQ)**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
Tell us what you think!
GEO.ca is committed to open dialogue and community building around location-based issues and
topics that matter to you.
Please send us your feedback