Home /Search
Search datasets
We have found 39 datasets for the keyword " lithologie". You can continue exploring the search results in the list below.
Datasets: 91,529
Contributors: 41
Results
39 Datasets, Page 1 of 4
Lithology of Ground Water Wells
Point features showing the locations of groundwater wells which have lithology recorded. Each record in the dataset represents a lithology interval. Because each water well often has multiple lithology layers recorded, there will often be multiple points overlapped at each well location. For the locations of all water wells in BC (without lithology), please see: https://catalogue.data.gov.bc.ca/dataset/e4731a85-ffca-4112-8caf-cb0a96905778 > NOTE: When choosing to download this GIS dataset below, there can be errors when trying to download the entire province. The large file size is a problem for the default file format (shapefile). > If you need to download the entire province, please choose a different file format (e.g. ESRI File Geodatabase). > If you need to download in shapefile format, please use an area of interest (AOI).
Bedrock Geological Units, Groundwater Geoscience Program
The bedrock geologic units designate units of the same types of rock which composed the solid rock exposed at ground surface (as outcrop) or which underlies unconsolidated surficial sediments. This dataset represents a general description of the stratigraphy and geology, including geologic unit thickness, morphology, age and rank. It features a list of the geologic unit names and types of rock (lithology) in the hydrogeological unit, from a controlled vocabulary. While the preferred format to deliver this data is by using a shapefile and its linked attributes, this dataset can be delivered also by providing link to external data which should have at least the same properties or also by joining a georeferenced image of the map.
Canada Geological Map Compilation
The Canada Geological Map Compilation (CGMC) is a database of previously published bedrock geological maps sourced from provincial, territorial, and other geological survey organizations. The geoscientific information included within these source geological maps wasstandardized, translated to English, and combined to provide complete coverage of Canada and support a range of down-stream machine learning applications. Detailed lithological, mineralogical, metamorphic, lithostratigraphic, and lithodemic information was not previously available as onenational-scale product. The source map data was also enhanced by correcting geometry errors and through the application of a new hierarchical generalized lithology classification scheme to subdivide the original rocks types into 35 classes. Each generalized lithology is associated with asemi-quantitative measure of classification uncertainty. Lithostratigraphic and lithodemic names included within the source maps were matched with the Lexicon of Canadian Geological Names (Weblex) wherever possible and natural language processing was used to transform all of the available text-basedinformation into word tokens. Overlapping map polygons and boundary artifacts across political boundaries were not addressed as part of this study. As a result, the CGMC is a patchwork of overlapping bedrock geological maps with varying scale (1:30,000-1:5,000,000), publication year (1996-2023), andreliability. Preferred geological and geochronological maps of Canada are presented as geospatial rasters based on the best available geoscientific information extracted from these overlapping polygons for each map pixel. New higher resolution geological maps will be added over time to fill datagaps and to update geoscientific information for future applications of the CGMC.
Lithogeochemistry Analyses
This dataset represents lithogeochemistry analyses of the Province of Saskatchewan.This dataset is a compilation of lithogeochemical analyses results for the province of Saskatchewan. The compilation was built as a file geodatabase feature class and output for public distribution. **Please Note – All published Saskatchewan Geological Survey datasets, including those available through the Saskatchewan Mining and Petroleum GeoAtlas, are sourced from the Enterprise GIS Data Warehouse. They are therefore identical and share the same refresh schedule.
Lithogeochemistry Athabasca
This dataset represents lithogeochemistry of Saskatchewan samples.This dataset represents lithogeochemistry of Saskatchewan samples. This dataset represents the exhaustive mapping and sampling program of the Athabasca Group between 1975 and 1981 by the Saskatchewan Geological Survey (SGS), the results of which are contained in Ramaekers (1990). These samples are now stored at the Ministry of Energy and Resources, Subsurface Geological Laboratory in Regina, Saskatchewan. A selection of these samples was chosen to help characterize the background geochemical signature of the Athabasca Group and to identify anomalous regions. A total of 837 samples were chosen. All samples in this data set were processed at the Geoanalytical Laboratories at the Saskatchewan Research Council (SRC) in Saskatoon, Saskatchewan, an ISO/IEC 17025:2005 certified facility (i.e., meets the General Requirements for the Competence of Mineral Testing and Calibration Laboratories). Samples were crushed, split, agate ground, and then run with Sandstone Exploration Package ICPMS 1. The package produces three separate analysis types: inductively coupled plasma mass spectroscopy (ICP MS) partial digestion for trace elements; ICP MS total digestion for trace elements; and ICP–Optical Emission Spectrometry (ICP–OES) total digestion for major and minor elements. Details and detection limits are available on the SRC’s website. ICP total digestion: a 0.250 g pulp is gently heated in a mixture of ultrapure HF/HNO3/HClO4until dry and the residue dissolved in dilute ultrapure HNO3; ICP MS total digestion: a 0.250 g pulp is gently heated in a mixture of ultrapure HF/HNO3/HClO4until dry and the residue dissolved in dilute ultrapure HNO3; ICP MS partial digestion: a 2.00 g pulp is digested with 2.25 ml of 8:1 ultrapure HNO3:HCl for 1 hour at 95° C; Detection limits are from the SRC's 2011 Analytical Fee Schedule; null values indicate that elements are below the detection limit. NOTE: Attribute data headings ending with TD indicate Total Digestion, those ending with PD indicate Partial Digestion. Majors oxides are in percent; all other elements are in ppm. **Please Note – All published Saskatchewan Geological Survey datasets, including those available through the Saskatchewan Mining and Petroleum GeoAtlas, are sourced from the Enterprise GIS Data Warehouse. They are therefore identical and share the same refresh schedule.
Viking Newcastle Flotten Lake Structure
These structure, isopach and zero edge files are part of a series of stratigraphic framework maps for the Saskatchewan Phanerozoic Fluids and Petroleum Systems (SPFPS) project.The series of stratigraphic framework maps for the Saskatchewan Phanerozoic Fluids and Petroleum Systems (SPFPS) project have been produced using 2 km equi-spaced modified grids generated from Golden Software’s Surfer 9 kriging algorithm. The dataset used to produce each of the maps in this series was created using data from several projects completed by the Ministry (Christopher, 2003; Saskatchewan Industry and Resources et al., 2004; Kreis et al., 2004; Marsh and Heinemann, 2006; Saskatchewan Ministry of Energy and Resources et al., 2007; Heinemann and Marsh, 2009); these data were validated and edited as required to facilitate correlations between the various regional projects. In addition, to minimize edge effects during contouring, the senior author also generated stratigraphic data from wells in adjacent jurisdictions.
Fire Burn Severity - Same Year
This layer is the current fire year burn severity classification for large fires (greater than 100 ha). Burn severity mapping is conducted using best available pre- and post-fire satellite multispectral imagery acquired by the MultiSpectral Instrument (MSI) aboard the Sentinel-2 satellite or the Operational Land Imager (OLI) sensor aboard the Landsat-8 and 9 satellites. Every attempt is made to use cloud, smoke, shadow and snow-free imagery that was acquired prior to September 30th. However, in late fire seasons imagery acquired after September 30th may be used. This layer is considered an interim product for the 1-year-later burn severity dataset (WHSE_FOREST_VEGETATION.VEG_BURN_SEVERITY_SP). Mapping conducted during the following growing season benefits from greater post-fire image availability and is expected to be more representative of tree mortality. #### Methodology: • Select suitable pre- and post-fire imagery or create a cloud/snow/smoke-free composite from multiple images scenes • Calculate normalized burn severity ratio (NBR) for pre- and post-fire images • Calculate difference NBR (dNBR) where dNBR = pre NBR – post NBR • Apply a scaling equation (dNBR_scaled = dNBR*1000 + 275)/5) • Apply BARC thresholds (76, 110, 187) to create a 4-class image (unburned, low severity, medium severity, and high severity) • Mask out water bodies using a satellite-derived water layer • Apply region-based filters to reduce noise • Confirm burn severity analysis results through visual quality control • Produce a vector dataset and apply Euclidian distance smoothing
Canadian Forest Fire Danger Rating System (CFFDRS) Fire Behaviour Prediction (FBP) Fuel Types 2024, 30 M
A national map of Canadian Fire Behaviour Prediction (FBP) Fuel Types (FT) developed from public data sources. The resolution of the raster grid is 30m, classified from the Spatialized Canadian National Forest Inventory (SCANFI) dataset, ecozones of Canada, and the National Burned Area Composite (NBAC). The purpose of the dataset is to characterize Canadian forests into fuel types for use in Fire Behaviour Prediction calculations as well as for situational awareness of national fire potential.
Viking Newcastle Flotten Lake Isopach
These structure, isopach and zero edge files are part of a series of stratigraphic framework maps for the Saskatchewan Phanerozoic Fluids and Petroleum Systems (SPFPS) project.The series of stratigraphic framework maps for the Saskatchewan Phanerozoic Fluids and Petroleum Systems (SPFPS) project have been produced using 2 km equi-spaced modified grids generated from Golden Software’s Surfer 9 kriging algorithm. The dataset used to produce each of the maps in this series was created using data from several projects completed by the Ministry (Christopher, 2003; Saskatchewan Industry and Resources et al., 2004; Kreis et al., 2004; Marsh and Heinemann, 2006; Saskatchewan Ministry of Energy and Resources et al., 2007; Heinemann and Marsh, 2009); these data were validated and edited as required to facilitate correlations between the various regional projects. In addition, to minimize edge effects during contouring, the senior author also generated stratigraphic data from wells in adjacent jurisdictions.
Operophtera brumata
Historical finds of Operophtera brumata
Tell us what you think!
GEO.ca is committed to open dialogue and community building around location-based issues and
topics that matter to you.
Please send us your feedback