Home /Search
Search datasets
We have found 886 datasets for the keyword "area burned". You can continue exploring the search results in the list below.
Datasets: 91,529
Contributors: 41
Results
886 Datasets, Page 1 of 89
Annual area burned by large fires (>200 hectares) - Short-term (2011-2040) under RCP 8.5
The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem.Annual area burned is the average surface area burned annually in Canada by large fires (greater than 200 hectares (ha)). Changes in annual area burned were estimated using Homogeneous Fire Regime (HFR) zones. These zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications.Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century.Provided layer: projected annual area burned by large fires (>200 ha) across Canada for the short-term (2011-2040) under the RCP 8.5 (continued emissions increases).Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.
Annual area burned by large fires (>200 hectares) - Long-term (2071-2100) under RCP 8.5
The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem.Annual area burned is the average surface area burned annually in Canada by large fires (greater than 200 hectares (ha)). Changes in annual area burned were estimated using Homogeneous Fire Regime (HFR) zones. These zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications.Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century.Provided layer: projected annual area burned by large fires (>200 ha) across Canada for the long-term (2071-2100) under the RCP 8.5 (continued emissions increases).Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.
Annual area burned by large fires (>200 hectares) - Medium-term (2041-2070) under RCP 8.5
The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem.Annual area burned is the average surface area burned annually in Canada by large fires (greater than 200 hectares (ha)). Changes in annual area burned were estimated using Homogeneous Fire Regime (HFR) zones. These zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications.Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century.Provided layer: projected annual area burned by large fires (>200 ha) across Canada for the medium-term (2041-2070) under the RCP 8.5 (continued emissions increases).Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.
Annual area burned by large fires (>200 hectares) - Reference Period (1981-2010)
The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem.Annual area burned is the average surface area burned annually in Canada by large fires (greater than 200 hectares (ha)). Changes in annual area burned were estimated using Homogeneous Fire Regime (HFR) zones. These zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications.Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century.Provided layer: annual area burned by large fires (>200 ha) across Canada for a reference period (1981-2010).Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.
Annual area burned by large fires (>200 hectares) - Long-term (2071-2100) under RCP 2.6
The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem.Annual area burned is the average surface area burned annually in Canada by large fires (greater than 200 hectares (ha)). Changes in annual area burned were estimated using Homogeneous Fire Regime (HFR) zones. These zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications.Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century.Provided layer: projected annual area burned by large fires (>200 ha) across Canada for the long-term (2071-2100) under the RCP 2.6 (rapid emissions reductions).Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.
Annual area burned by large fires (>200 hectares) across Canada
The fire regime describes the patterns of fire seasonality, frequency, size, spatial continuity, intensity, type (e.g., crown or surface fire) and severity in a particular area or ecosystem.Annual area burned is the average surface area burned annually in Canada by large fires (greater than 200 hectares (ha)). Changes in annual area burned were estimated using Homogeneous Fire Regime (HFR) zones. These zones represent areas where the fire regime is similar over a broad spatial scale (Boulanger et al. 2014). Such zonation is useful in identifying areas with unusual fire regimes that would have been overlooked if fires had been aggregated according to administrative and/or ecological classifications.Fire data comes from the Canadian National Fire Database covering 1959–1999 (for HFR zones building) and 1959-1995 (for model building). Multivariate Adaptive Regression Splines (MARS) modeling was used to relate monthly fire regime attributes with monthly climatic/fire-weather in each HFR zone. Future climatic data were simulated using the Canadian Earth System Model version 2 (CanESM2) and downscaled at a 10 Km resolution using ANUSPLIN for two different Representative Concentration Pathways (RCP). RCPs are different greenhouse gas concentration trajectories adopted by the Intergovernmental Panel on Climate Change (IPCC) for its fifth Assessment Report. RCP 2.6 (referred to as rapid emissions reductions) assumes that greenhouse gas concentrations peak between 2010-2020, with emissions declining thereafter. In the RCP 8.5 scenario (referred to as continued emissions increases) greenhouse gas concentrations continue to rise throughout the 21st century.Multiple layers are provided. First, the annual area burned by large fires (>200 ha) is shown across Canada for a reference period (1981-2010). Projected annual area burned layers are available for the short- (2011-2040), medium- (2041-2070), and long-term (2071-2100) under the RCP 8.5 (continued emissions increases) and, for the long-term (2071-2100), under RCP 2.6 (rapid emissions reductions).Reference: Boulanger, Y., Gauthier, S., et al. 2014. A refinement of models projecting future Canadian fire regimes using homogeneous fire regime zones. Canadian Journal of Forest Research 44, 365–376.
Fire management agreement area
Fire management agreements divide land into 4 areas: * Crown Protection Area (CPA): The Crown is responsible for responding to all fires in the CPA * Municipal Protection Area (MPA): The municipality is responsible for responding in the MPA * Federal Protection Area (FPA): The federal government is responsible for responding in the FPA * Northern Fire Protection Area (NFPA): The local fire department (mostly in unorganized areas) is responsible for responding to all incidents and the suppression of fires in the NFPA *[CPA]: Crown Protection Area *[FPA]: Federal Protection Area *[NFPA]: Northern Fire Protection Area *[MPA]: Municipal Protection Area
Annual forest fire reporting data
Get data on forest fires, compiled annually for the National Forestry Database [The National Forestry Database](http://nfdp.ccfm.org/en/index.php) includes national forest data and forest management statistics to seve as a credible, accurate and reliable source of information on forest management and its impact on the forest resource. Forest fire data is grouped into eight categories, which are further broken down by geographic location. These include: * number of fires by cause class and response category * area burned by cause class and response category * number of fires by month and response category * area burned by month and response category * number of fires by fire size class and response category * area burned by fire size class and response category * area burned by productivity class, stocking class, maturity class and response category * other fire statistics, such as property losses
Canadian Forest Fire Danger Rating System (CFFDRS) Fire Behaviour Prediction (FBP) Fuel Types 2024, 30 M
A national map of Canadian Fire Behaviour Prediction (FBP) Fuel Types (FT) developed from public data sources. The resolution of the raster grid is 30m, classified from the Spatialized Canadian National Forest Inventory (SCANFI) dataset, ecozones of Canada, and the National Burned Area Composite (NBAC). The purpose of the dataset is to characterize Canadian forests into fuel types for use in Fire Behaviour Prediction calculations as well as for situational awareness of national fire potential.
Fire Disturbance Point
This dataset shows the locations of ignition points for forest fires less than 40 hectares in size. Fires that grow larger than 40 hectares are mapped in the [Fire Disturbance Area](https://data.ontario.ca/dataset/fire-disturbance-area-firedstb) dataset. The [Forest Fire Info Map](https://www.gisapplication.lrc.gov.on.ca/ForestFireInformationMap/index.html?viewer=FFIM.FFIM&locale=en-US) shows active fires, current fire danger and restricted fire zones in place due to high fire danger.
Tell us what you think!
GEO.ca is committed to open dialogue and community building around location-based issues and
topics that matter to you.
Please send us your feedback