Home /Search
Search datasets
We have found 756 datasets for the keyword "ice conditions". You can continue exploring the search results in the list below.
Datasets: 100,295
Contributors: 42
Results
756 Datasets, Page 1 of 76
Variation in ringed seal (Pusan hispida) density along a latitudinal gradient of sea-ice conditions
PURPOSE:Ringed seals (Pusa hispida) rely on sea ice as habitat throughout their life history and inhabit a broad latitudinal range with diverse sea-ice conditions. Anthropogenic climate warming is triggering poleward species redistributions, highlighting the importance of understanding how species distributions and abundance vary along latitudinal gradients. Using ringed seals as a model species, the purpose was to estimate density via aerial surveys along a latitudinal gradient in the eastern Canadian Arctic to investigate latitudinal trends in the ringed seals response to regional variation in sea-ice conditions. DESCRIPTION:Ringed seals (Pusa hispida) rely on sea ice as habitat throughout their life history and inhabit a broad latitudinal range with diverse sea-ice conditions, making them a model species to study patterns in density along a spatial-environmental gradient. We estimated the density of ringed seals from systematic aerial surveys along a latitudinal gradient in the eastern Canadian Arctic to investigate latitudinal trends in the ringed seals response to regional variation in sea-ice conditions. Ringed seals exhibited similar densities at lower and intermediate latitudes, while higher latitudes displayed an order of magnitude lower ringed seal density. This shift is concurrent with the transition in ice conditions from predominantly first-year ice at lower latitudes to primarily multiyear ice at higher latitudes. These findings indicate that the variation in icescapes across the ringed seal’s vast range influences their density. The shift in sea-ice conditions may also have consequences for biological productivity that supports their diet. Our results highlight a likely non-uniform response of ringed seals to ongoing sea-ice recession across the Arctic.
Multidisciplinary Arctic Program (MAP)-Last Ice, 2018 Spring Campaign: Sea ice fatty acids and stable isotopes
In 2018, Fisheries and Oceans Canada initiated the Multidisciplinary Arctic Program (MAP) – Last Ice, the first ecosystem study of the poorly characterized region of Tuvaijuittuq, where multiyear ice still resides in the Arctic Ocean. The program MAP-Last Ice takes a coordinated approach to integrate the physical, biochemical, and ecological components of the sea ice-ocean connected ecosystem and its response to climate and ocean forcings. This program provides baseline ecological knowledge for Tuvaijuittuq and, in particular, for its unique multiyear ice ecosystem. The database provides baseline data on fatty acid composition and stable isotopes signatures of sea ice communities in multi- and first-year ice in Tuvaijuittuq. The data were collected during the 2018 spring field campaign of the MAP-Last Ice Program, offshore of Canadian Forces Station (CFS) Alert, in the Lincoln Sea.
Ground ice map of Canada - wedge ice
The mapping depicts the relative abundance of wedge ice in upper permafrost at a national scale. The mapping is based on modelling by O'Neill et al. (2019) (https://doi.org/10.5194/tc-13-753-2019). The mapping offers an improved depiction of ground ice in Canada at a broad scale, incorporating current knowledge on the associations between geological and environmental conditions and ground ice type and abundance. It provides a foundation for hypothesis testing related to broad-scale controls on ground ice formation, preservation, and melt.
Ground ice map of Canada
The mapping depicts a first-order estimate of the combined volumetric percentage of excess ice in the top 5 m of permafrost from segregated, wedge, and relict ice. The estimates for the three ice types are based on modelling by O'Neill et al. (2019) (https://doi.org/10.5194/tc-13-753-2019), and informed by available published values of ground ice content and expert knowledge. The mapping offers an improved depiction of ground ice in Canada at a broad scale, incorporating current knowledge on the associations between geological and environmental conditions and ground ice type and abundance. It provides a foundation for hypothesis testing related to broad-scale controls on ground ice formation, preservation, and melt.
Ground ice map of Canada - segregated ice
The mapping depicts the relative abundance of segregated ice in upper permafrost at a national scale. The mapping is based on modelling by O'Neill et al. (2019) (https://doi.org/10.5194/tc-13-753-2019). The mapping offers an improved depiction of ground ice in Canada at a broad scale, incorporating current knowledge on the associations between geological and environmental conditions and ground ice type and abundance. It provides a foundation for hypothesis testing related to broad-scale controls on ground ice formation, preservation, and melt.
Ground ice map of Canada - relict ice
The mapping depicts the relative abundance of relict (buried glacier) ice preserved in upper permafrost at a national scale. The mapping is updated and based on modelling by O'Neill et al. (2019) (https://doi.org/10.5194/tc-13-753-2019). The mapping offers an improved depiction of ground ice in Canada at a broad scale, incorporating current knowledge on the associations between geological and environmental conditions and ground ice type and abundance. It provides a foundation for hypothesis testing related to broad-scale controls on ground ice formation, preservation, and melt.
Projected Sea Ice Concentration change based on CMIP5 multi-model ensembles
Seasonal and annual multi-model ensembles of projected change (also known as anomalies) in sea ice concentration based on an ensemble of twenty-eight Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models are available for 1900-2100. Sea ice concentration is represented as the percentage (%) of grid cell area. Therefore, projected change in sea ice concentration is with respect to the reference period of 1986-2005 and expressed as a percentage (%). The 5th, 25th, 50th, 75th and 95th percentiles of the ensembles of sea ice concentration change are available for the historical time period, 1900-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in sea ice concentration (%) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
Multidisciplinary Arctic Program (MAP) - Last Ice, 2018 Spring Campaign: Sea ice and surface water bacteria, viruses and environmental variables
In 2018, Fisheries and Oceans Canada initiated the Multidisciplinary Arctic Program (MAP) – Last Ice, the first ecosystem study of the poorly characterized region of the Lincoln Sea in the Marine Protected Area of Tuvaijuittuq, where multiyear ice still resides in the Arctic Ocean. MAP-Last Ice takes a coordinated approach to integrate the physical, biochemical, and ecological components of the sea ice-ocean connected ecosystem and its response to climate and ocean forcings. The cross-disciplinary program establishes baseline ecological knowledge for Tuvaijuittuq and, in particular, for its unique multiyear ice ecosystem. The database provides baseline data on the abundance of bacteria and viruses in multi- and first-year ice and in surface waters of the Lincoln Sea in Tuvaijuittuq, and their relation to bio-physical conditions. The data were collected during the 2018 spring field campaign of the MAP-Last Ice Program, at an ice camp offshore of Canadian Forces Station (CFS) Alert.
Overland Flood Alerts
Current weather induced overland flood alertsThe Hydrologic Forecast Centre (HFC) issues several categories of flood alert throughout the year including riverine flooding due to snowmelt and rainfall, wind and wave induced shoreline flooding and ice pileup, and rainfall induced overland flooding. This layer demonstrates the location and/or extend of current alerts due to rainfall induced overland flooding. The types are defined below:Overland Flood Warning: A severe weather warning that is issued to alert the public that overland flooding is imminent or occurring in the warned area. Overland flooding is a quick onset of flood conditions, usually occurring after heavy rain that may not be linked to a specific waterway or lake. Rainfall intensity and duration, topography, soil conditions and ground cover are factors impacting overland flooding. Overland flooding can also occur because of a sudden release of water held by an ice jam.Overland Flood Watch: A severe weather watch that is issued when conditions are favourable for overland flooding. Normally issued when significant rainfall is expected in locations with saturated soil.
Probability of the annual minimum snow and ice (MSI) presence over Canada
Snow and ice are important hydrological resources. Their minimum spatial extent here referred to as annual minimum snow/ice (MSI) cover, plays a very important role as an indicator of long-term changes and baseline capacity for surface water storage. The MSI probability is derived from sequence of seventeen 10-day clear-sky composites corresponding to April, 1 to September, 20 warm period for each year since 2000. Data from Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra satellite for the period since 2000 have been processed with the special technology developed at the Canada Centre for Remote Sensing (CCRS) as described in Trishchenko, 2016; Trishchenko et al., 2016; 2009, 2006, Trishchenko and Ungureanu, 2021, Khlopenkov and Trishchenko, 2008, Luo et al., 2008. The presence of snow or ice is determined for each pixel of the image based on snow/ice scene identification procedure and the probability if computed for the entire warm season as a ratio of number of snow/ice flags to the total number of pixels available (less or equal to 17). The minimum snow and ice extent can be derived from the probability map by applying a certain threshold. New data version V5.0 replaces previous version V4.0 for all data available since 2000. All MSI files were reprocessed for all MODIS input data based on collection 6.1. The output format has not changed since previous version. It is described in Trishchenko (2024). The impact of input data change is small and can be detected only for time interval 2000-2015. Data starting 2016 has been already derived using MODIS collection 6.1 input.The differences between the MSI data based on MODIS Collection 5 (i.e. MSI V4) versus MODIS Collection 6.1 (i.e. MSI V5), on average, are quite small. The region-wide relative difference in the MSI extent varies from -3.97% to +1.75%. The mean value is -0.14%, the median value is 0.18% and standard deviation is 1.83%. As such, we do not expect any sizeable impact of the version change on our previous conclusions regarding trends and climate variations, except for refining the relative values of statistical parameters within the range of a few percents. References:TRISHCHENKO, A.P., 2024: Probability maps of the annual minimum snow and ice (MSI) presence over April,1 to September, 20 period since 2000 derived from MODIS 250m imagery over Canada and neighbouring regions. Data format description. CCRS, NRCan. 4pp.
Tell us what you think!
GEO.ca is committed to open dialogue and community building around location-based issues and
topics that matter to you.
Please send us your feedback