Home /Search
Search datasets
We have found 125 datasets for the keyword "lidar". You can continue exploring the search results in the list below.
Datasets: 91,529
Contributors: 41
Results
125 Datasets, Page 1 of 13
South Tobacco Creek Watershed LiDAR Project
LiDAR data was collected using LSI's proprietary Helix LiDAR system - Novatel GPS and SPANS inertial unit, coupled to a Riegl Q560 digital waveform ranging laser and mounted in a Cessna 185 aircraft. LiDAR was collected at 600m AGL, and a ground speed of 160km/h. Original data was in an ASCII XYZ coordinate format.
Lidar Digital Elevation Model (DEM)
LiDAR Derived Digital Elevation Models available at a 1m resolution in New Brunswick Stereographic Double Projection (NBSDP). LiDAR Derived Digital Elevation Models and Digital Surface Models available at 1m or 2m resolutions from NRCAN in Universal Transverse Mercator (UTM).
Manitoba LiDAR Tracker
The purpose of this dataset is to show end users where LiDAR data has been acquired by the Government of Manitoba.LiDAR (Light Detection and Ranging) is a remote sensing technology that uses lasers to collect accurate, continuous elevation data over relatively large areas. These data are essential for activities such as forestry, flood risk management, land use planning, and natural resources management. The Manitoba Government is increasingly acquiring LiDAR data across the province.This layer was created on August 5, 2009 by Manitoba Sustainable Development and was updated on August 9, 2021.To download LiDAR data from the Manitoba Land Initiative (MLI) site, follow this link: https://mli2.gov.mb.ca/dems/index_external_lidar.html Fields included ( Alias (Field Name): Field description.) ObjectID (OBJECTID) - Automatically generated feature numberAcquired (ACQUIRED) - LiDAR data capture dateContractor (CONTRACTOR) - Contractor nameContributor (CONTRIB) - Manitoba Government departmentName (NAME) - Dataset nameCellsize (CELLSIZE) - Raster DEM cell sizeMLI (MLI) - Data available for download on the Manitoba Land Initiative site
LiDAR Point Clouds - CanElevation Series
The LiDAR Point Clouds is a product that is part of the CanElevation Series created to support the National Elevation Data Strategy implemented by NRCan.This product contains point clouds from various airborne LiDAR acquisition projects conducted in Canada. These airborne LiDAR acquisition projects may have been conducted by NRCan or by various partners. The LiDAR point cloud data is licensed under an open government license and has been incorporated into the National Elevation Data Strategy.Point cloud files are distributed by LiDAR acquisition project without integration between projects.The point cloud files are distributed using the compressed .LAZ / Cloud Optimized Point Cloud (COPC) format. The COPC open format is an octree reorganization of the data inside a .LAZ 1.4 file. It allows efficient use and visualization rendering via HTTP calls (e.g. via the web), while offering the capabilities specific to the compressed .LAZ format which is already well established in the industry. Point cloud files are therefore both downloadable for local use and viewable via URL links from a cloud computing environment.The reference system used for all point clouds in the product is NAD83(CSRS), epoch 2010. The projection used is the UTM projection with the corresponding zone. Elevations are orthometric and expressed in reference to the Canadian Geodetic Vertical Datum of 2013 (CGVD2013).
Automatically Extracted Buildings
“Automatically Extracted Buildings” is a raw digital product in vector format created by NRCan.It consists of a single topographical feature class that delineates polygonal building footprints automatically extracted from airborne Lidar data, high-resolution optical imagery or other sources.
Level curves
Level curves with an equidistance of 1 m derived from a lidar survey conducted in 2015.attributes:ID - Unique identifierSubtype - Master (1) or secondary (2) level curve SCORE - Elevation value (m) The product High Resolution Digital Elevation Model (MNEHR) is available on the Open Government website.**This third party metadata element was translated using an automated translation tool (Amazon Translate).**
Forest Elevation(Ht) Stddev 2015
Forest Elevation(Ht) Stddev 2015Standard deviation of height of lidar first returns (m). Represents the variability in canopy heights. Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018)Geographic extent: Canada's forested ecosystems (~ 650 Mha)Time period: 1985–2011
Forest Elevation(Ht) Mean 2015
Forest Elevation(Ht) Mean 2015Mean height of lidar first returns (m). Represents the mean canopy height. Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018) Wulder et al. 2018)Geographic extent: Canada's forested ecosystems (~ 650 Mha)Time period: 1985–2011
Forest 95th Percentile Elevation(Ht) 2015
Forest 95th Percentile Elevation(Ht) 201595th percentile of first returns height (m). Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018)Geographic extent: Canada's forested ecosystems (~ 650 Mha)Time period: 1985–2011
Forest Basal Area 2015
Forest Basal Area 2015Cross-sectional area of tree stems at breast height. The sum of the cross-sectional area (i.e. basal area) of each tree in square metres in a plot, divided by the area of the plot (ha) (units = m2ha). Products relating the structure of Canada's forested ecosystems have been generated and made openly accessible. The shared products are based upon peer-reviewed science and relate aspects of forest structure including: (i) metrics calculated directly from the lidar point cloud with heights normalized to heights above the ground surface (e.g., canopy cover, height), and (ii) modelled inventory attributes, derived using an area-based approach generated by using co-located ground plot and ALS data (e.g., volume, biomass). Forest structure estimates were generated by combining information from lidar plots (Wulder et al. 2012) with Landsat pixel-based composites (White et al. 2014; Hermosilla et al. 2016) using a nearest neighbour imputation approach with a Random Forests-based distance metric. These products were generated for strategic-level forest monitoring information needs and are not intended to support operational-level forest management. All products have a spatial resolution of 30 m. For a detailed description of the data, methods applied, and accuracy assessment results see Matasci et al. (2018). When using this data, please cite as follows: Matasci, G., Hermosilla, T., Wulder, M.A., White, J.C., Coops, N.C., Hobart, G.W., Bolton, D.K., Tompalski, P., Bater, C.W., 2018b. Three decades of forest structural dynamics over Canada's forested ecosystems using Landsat time-series and lidar plots. Remote Sensing of Environment 216, 697-714. Matasci et al. 2018)Geographic extent: Canada's forested ecosystems (~ 650 Mha)Time period: 1985–2011
Tell us what you think!
GEO.ca is committed to open dialogue and community building around location-based issues and
topics that matter to you.
Please send us your feedback