Home /Search
Search datasets
We have found 653 datasets for the keyword "météorologie". You can continue exploring the search results in the list below.
Datasets: 100,295
Contributors: 42
Results
653 Datasets, Page 1 of 66
Ocean Weather Station Papa, 1949-1981
The Canadian Weathership Program collected meteorological data at Station Papa (50N, 145W) in the North Pacific Ocean between 1949 and 1981. In 2014, researchers at the University of Washington (UW) Applied Physics Laboratory (APL) and the National Oceanic and Atmospheric Administration (NOAA) Pacific Marine Environmental Laboratory (PMEL) analyzed this historic data to determine its efficacy as a scientific tool. The data available here are the Government of Canada data files that were utilized for this analysis. The "OWSP Full Data (1949-1981)" file contains the entire Canadian Weathership Program record of data collected from Station Papa and the "OWSP Daily Averaged Wind Speed and Wave Height Data (1949-1981)" file contains daily averaged values of wind speed and wave height generated by the UW APL and NOAA PMEL researchers. The Data Dictionary for each data file contains notes on any quality controls that were applied to the data by the UW APL and NOAA PMEL researchers. The UW documents titled, "Data Documentation for Dataset 1170 (DSI-1170), Surface Marine Data, National Climatic Data Center" (https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/25570/td1170.pdf?sequence=6&isAllowed=y) and "Table detailing units of data values in each file" (https://digital.lib.washington.edu/researchworks/handle/1773/25570), provide further information on the key values, point scales, and other units that were used in these datasets.
Statistically downscaled scenarios of projected mean temperature change
Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in mean temperature (°C) are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Downscaled daily mean temperature was calculated by averaging downscaled daily minimum and maximum temperature. Daily minimum and maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). Historical gridded minimum and maximum temperature datasets of Canada (ANUSPLIN) were used as the respective downscaling targets. Projected change in mean temperature (°C) is with respect to the reference period of 1986-2005. Seasonal and annual averages of projected mean temperature change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of mean temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled minimum mean temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
Seasonal Climatologies of the Northeast Pacific Ocean (1980-2010)
Description:Seasonal climatologies (temperature, salinity, and sigma-t) of the Northeast Pacific Ocean were computed from historical observations including all available conductivity-temperature-depth (CTD), bottle, expendable bathy-thermograph (XBT), and Argo data in NOAA (http://www.argo.ucsd.edu/), Marine Environmental Data Service (MEDS), and Institute of Ocean Sciences archives over 1980 to 2010 period in spatial resolution ranging from approximately 100m to 70km.Methods:Calculations, including smooth and interpolation, were carried out in sixty-five subregions and up to fifty-two vertical levels from surface to 5000m. Seasonal averages were computed as the median of yearly seasonal values. Spring months were defined as April to June, summer months were defined as July to September, fall months were defined as October to December, and winter months were defined as January to March.Uncertainties:Uncertainties are introduced when quality controlled observational data are spatially interpolated to varying distances from the observation point. Climatological averages are calculated from these interpolated values.
Statistically downscaled scenarios of projected maximum temperature change
Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in maximum temperature (°C) are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily maximum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded maximum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. Projected change in maximum temperature (°C) is with respect to the reference period of 1986-2005. Seasonal and annual averages of projected maximum temperature change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of maximum temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled maximum temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
Statistically downscaled scenarios of projected minimum temperature change
Statistically downscaled multi-model ensembles of projected change (also known as anomalies) in minimum temperature (°C) are available at a 10km spatial resolution for 1951-2100. Statistically downscaled ensembles are based on output from twenty-four Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models (GCM). Daily minimum temperature from GCM outputs were downscaled using the Bias Correction/Constructed Analogues with Quantile mapping version 2 (BCCAQv2). A historical gridded minimum temperature dataset of Canada (ANUSPLIN) was used as the downscaling target. Projected change in minimum temperature (°C) is with respect to the reference period of 1986-2005. Seasonal and annual averages of projected minimum temperature change to 1986-2005 are provided. Specifically, the 5th, 25th, 50th, 75th and 95th percentiles of the downscaled ensembles of minimum temperature change are available for the historical time period, 1901-2005, and for emission scenarios, RCP2.6, RCP4.5 and RCP8.5, for 2006-2100. Twenty-year average changes in statistically downscaled mean minimum temperature (°C) for four time periods (2021-2040; 2041-2060; 2061-2080; 2081-2100), with respect to the reference period of 1986-2005, for RCP2.6, RCP4.5 and RCP8.5 are also available in a range of formats. The median projected change across the ensemble of downscaled CMIP5 climate models is provided. Note: Projections among climate models can vary because of differences in their underlying representation of earth system processes. Thus, the use of a multi-model ensemble approach has been demonstrated in recent scientific literature to likely provide better projected climate change information.
Landsat Circa 2010 Top of Atmosphere Reflectance Mosaic of Canada
Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) sensors were used to generate the circa 2010 Mosaic of Canada at 30 m spatial resolution. All scenes were processed to Standard Terrain Correction Level 1T by the United States Geological Survey (USGS). Further processing performed by the Canada Centre for Remote Sensing included conversion of sensor measurements to top of atmosphere reflectance, cloud and cloud shadow detection, re-projection, selection of best measurements, mosaic generation ,noise removal and quality control. To provide a clear sky measurement for each location in Canada, data from the years 2009, 2010, and 2011 were used, but 2010 was preferentially selected. Bands 3 (0.63-0.69 µm), 4 (0.76-0.90 µm), 5 (1.55-1.75 µm), and 7 (2.08-2.35 µm) are provided in this version as significant atmosphere effects strongly limit the quality of the blue (0.45-0.52 µm) and green (0.52-0.60 µm) bands. Multi-criteria compositing was used for the selection of the most representative pixel. For ETM+ onboard Landsat 7 a scan line malfunction caused missing lines of data in all scenes collected after May 2003. Atmosphere and target variability between scenes cause these lines to have significant radiometric differences in some cases. A Fourier transformation approach was applied to correct this occurrence. This mosaic was developed for land cover and biophysical mapping applications across Canada. Other applications of these data are also possible, but should consider the temporal and spectral limitations of the product. Research to enhance the spatial, spectral and temporal aspects are in development for future versions of moderate resolution products from historical Landsat sensors, Landsat 8, and Sentinel 2 data.
Weather Elements on Grid based on the High Resolution Deterministic Prediction System
Weather Elements on Grid (WEonG) based on the High Resolution Deterministic Prediction System (HRDPS) is a post-processing system designed to compute the weather elements required by different forecast programs (public, marine, aviation, air quality, etc.). This system amalgamates numerical and post-processed data using various diagnostic approaches. Hourly concepts are produced from different algorithms using outputs from the pan-Canadian High Resolution Deterministic Prediction System (HRDPS-NAT).
Solar Resource, NSRDB PSM Global Horizontal Irradiance (GHI) - North American Cooperation on Energy Information
Average of the hourly Global Horizontal Irradiance (GHI) over 17 years (1998-2014). Data extracted from the National Solar Radiation Database (NSRDB) developed using the Physical Solar Model (PSM) by National Renewable Energy Laboratory ("NREL"), Alliance for Sustainable Energy, LLC, U.S. Department of Energy ("DOE").The current version of the National Solar Radiation Database (NSRDB) (v2.0.1) was developed using the Physical Solar Model (PSM), and offers users the solar resource datasets from 1998 to 2014). The NSRDB comprises 30-minute solar and meteorological data for approximately 2 million 0.038-degree latitude by 0.038-degree longitude surface pixels (nominally 4 km2). The area covered is bordered by longitudes 25° W on the east and 175° W on the west, and by latitudes -20° S on the south and 60° N on the north. The solar radiation values represent the resource available to solar energy systems. The AVHRR Pathfinder Atmospheres-Extended (PATMOS-x) model uses half-hourly radiance images in visible and infrared channels from the GOES series of geostationary weather satellites, a climatological albedo database and mixing ratio, temperature and pressure profiles from Modern Era-Retrospective Analysis (MERRA) to generate cloud masking and cloud properties. Cloud properties generated using PATMOS-x are used in fast radiative transfer models along with aerosol optical depth (AOD) and precipitable water vapor (PWV) from ancillary sources to estimate Direct Normal Irradiance (DNI) and Global Horizontal Irradiance (GHI). A daily AOD is retrieved by combining information from the MODIS and MISR satellites and ground-based AERONET stations. Water vapor and other inputs are obtained from MERRA. For clear sky scenes the direct normal irradiance (DNI) and GHI are computed using the REST2 radiative transfer model. For cloud scenes identified by the cloud mask, Fast All-sky Radiation Model for Solar applications (FARMS) is used to compute the GHI. The DNI for cloud scenes is then computed using the DISC model. The data in this layer is an average of the hourly GHI over 17 years (1998-2014). NOTE: The Geographical Information System (GIS) data and maps for solar resources for Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) were developed by the U.S. National Renewable Energy Laboratory (NREL) and provided for Canada as an estimate. At present, neither the NREL data, nor the Physical Solar Model (PSM) on which the NREL data is based, have been either assessed or validated for the particular Canadian weather applications. A Canadian GHI map developed by the department of Natural Resources Canada (NRCan) is based on the State University of New York (SUNY) model and has been assessed and validated for the particular Canadian weather applications. The Canadian GHI map is available at http://atlas.gc.ca/cerp-rpep/en/.
Solar Resource, NSRDB PSM Direct Normal Irradiance (DNI) - North American Cooperation on Energy Information
Average of the hourly Direct Normal Irradiance (DNI) over 17 years (1998-2014). Data extracted from the National Solar Radiation Database (NSRDB) developed using the Physical Solar Model (PSM) by National Renewable Energy Laboratory ("NREL"), Alliance for Sustainable Energy, LLC, U.S. Department of Energy ("DOE").The current version of the National Solar Radiation Database (NSRDB) (v2.0.1) was developed using the Physical Solar Model (PSM), and offers users the solar resource datasets from 1998 to 2014). The NSRDB comprises 30-minute solar and meteorological data for approximately 2 million 0.038-degree latitude by 0.038-degree longitude surface pixels (nominally 4 km2). The area covered is bordered by longitudes 25° W on the east and 175° W on the west, and by latitudes -20° S on the south and 60° N on the north. The solar radiation values represent the resource available to solar energy systems. The AVHRR Pathfinder Atmospheres-Extended (PATMOS-x) model uses half-hourly radiance images in visible and infrared channels from the GOES series of geostationary weather satellites, a climatological albedo database and mixing ratio, temperature and pressure profiles from Modern Era-Retrospective Analysis (MERRA) to generate cloud masking and cloud properties. Cloud properties generated using PATMOS-x are used in fast radiative transfer models along with aerosol optical depth (AOD) and precipitable water vapor (PWV) from ancillary sources to estimate Direct Normal Irradiance (DNI) and Global Horizontal Irradiance (GHI). A daily AOD is retrieved by combining information from the MODIS and MISR satellites and ground-based AERONET stations. Water vapor and other inputs are obtained from MERRA. For clear sky scenes the direct normal irradiance (DNI) and GHI are computed using the REST2 radiative transfer model. For cloud scenes identified by the cloud mask, Fast All-sky Radiation Model for Solar applications (FARMS) is used to compute the GHI. The DNI for cloud scenes is then computed using the DISC model. The data in this layer is an average of the hourly GHI over 17 years (1998-2014). NOTE: The Geographical Information System (GIS) data and maps for solar resources for Global Horizontal Irradiance (GHI) and Direct Normal Irradiance (DNI) were developed by the U.S. National Renewable Energy Laboratory (NREL) and provided for Canada as an estimate. At present, neither the NREL data, nor the Physical Solar Model (PSM) on which the NREL data is based, have been either assessed or validated for the particular Canadian weather applications. A Canadian GHI map developed by the department of Natural Resources Canada (NRCan) is based on the State University of New York (SUNY) model and has been assessed and validated for the particular Canadian weather applications. The Canadian GHI map is available at http://atlas.gc.ca/cerp-rpep/en/.
AERMOD Input File Download by Location
This dataset is a locational record of the meteorological input files publically available on Saskatchewan GeoHub that can be used with the Environmental Protection Agency approved Regulatory Model (AERMOD). Each file represents the meteorology over an area of the province while minimizing the influences of local terrain on air flow. Additional attribute information for each location includes coordinates and a link to download the AERMOD data as a zip file.The Air Quality Section of the Ministry of Environment uses air quality modelling to simulate how air pollutants disperse in the ambient atmosphere in order to help manage the air quality in the province. The models are used to estimate the impact of air pollutants emitted from emission sources, and are typically employed to determine whether existing or new proposed industrial facilities are or will be in compliance with the ambient air quality standards outlined in Table 20 of the province's Environmental Code, June 1, 2015 under The Environmental Management and Protection Act, 2010. The information needed to run dispersion models consists primarily of emissions and meteorological data. Five years (2012-2016) of preprocessed meteorological datasets in an AERMOD ready format is publicly available. This file is contained in the downloadable zipped file. The zipped file contains five files: the SFC and PFL files are the AERMOD ready files required to run AERMOD (i.e., data, sensible heat flux, frictional velocity, potential temperature gradient, vertical velocity, mixing height, monin-obukhov length, surface roughness, Bowen ratio, albedo, scalar wind speed, wind direction, ambient temperature, precipitation, precipitation rate, relative humidity, surface pressure, and total cloud amounts); the DAT file contains the land use information (i.e., Surface roughness, Bowen ratio and albedo) chosen for each month in the SFC file; the KMZ file contains the wind rose for that location which can be used on Google Earth; and the PNG file contains various graphs of monthly or diurnal meteorological distribution (i.e., temperature, wind speed, daytime mixing heights and sensible heat flux, and stability) which can be used to help determine if that location is representative of the area proposed for modelling. Please note: Since this data is newly developed, it is possible there may be issues with the data as it gets used in more applications. Ongoing changes, edits and updates may be made by the Air Quality Section of the Ministry of Environment. Is is recommended for any future modelling to download the latest version of the input files and not archive any input files on your own server for future use, unless this notification no longer exists. If there are any issues discovered with data in the zipped file, please contact Dennis Fudge at dennis.fudge@gov.sk.ca or at 306-519-7105. Your support will be greatly appreciated. There may be times you feel that the input files are not representative of the proposed modelling domain due to the surrounding features (i.e., forest/agricultural or rural/urban) being different than those used to generate the input files. If that is the case, the modeler can generate the input modelling files themselves. The relevant files to generate these input files are available upon request. Please contact Dennis Fudge at dennis.fudge@gov.sk.ca or at 306-519-7105.
Tell us what you think!
GEO.ca is committed to open dialogue and community building around location-based issues and
topics that matter to you.
Please send us your feedback