Home /Search
Search datasets
We have found 369 datasets for the keyword "océan". You can continue exploring the search results in the list below.
Datasets: 100,295
Contributors: 42
Results
369 Datasets, Page 1 of 37
Regional Ice-Ocean Prediction System
The Regional Ice Ocean Prediction System (RIOPS) provides ice and ocean forecasts up to 84 hours, four times per day on a 1/12° resolution grid (3-8 km). RIOPS is initialized using analyses from the Global Ice-Ocean Prediction System (GIOPS). Atmospheric fluxes up to 84 hours forecasts are calculated using fields from a component of the Global Deterministic Prediction System (GDPS) at 10km horizontal resolution
Coastal Environmental Baseline Program (Maritimes Region), Northwest Fundy Shores conductivity, temperature and depth data
The Coastal Environmental Baseline Program is a multi-year Fisheries and Oceans Canada initiative designed to work with Indigenous and local communities and other key parties to collect coastal environmental data at a series of sites across Canada, to build a better understanding of existing marine ecological conditions. The program began data collection in 2019, and with the onset of Phase 2 in 2023, the Maritimes region study area was expanded and renamed ‘Northwest Fundy Shores’. A physical oceanography program was designed to align with the oceanographic interests and data needs of local interest holders. Starting in 2023, oceanographic parameters including water temperature, salinity, depth and turbidity have been monitored at a series of locations in Passamaquoddy Bay, the St. Croix River, and along the Bay of Fundy coast, including the Musquash estuary Marine Protected Area (MPA). This dataset includes seasonal CTD (conductivity, temperature and depth) and turbidity data starting in spring 2023. Instruments are maintained through the winter months at a limited number of sites. Data collection methods are primarily moored instruments on the bottom in water depths of 5-90 meters, and a few buoyant surface floats. Overall, this dataset captures seasonal dynamics in near-shore marine environments in Passamaquoddy Bay, the St Croix River, the Bay of Fundy and the Musquash MPA. Cite this data as: Coastal Environmental Baseline Program (Maritimes Region), Northwest Fundy Shores conductivity, temperature and depth data. Published in May 2025. Coastal Environmental Baseline Program. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, St. Andrews, N.B. 14-02-2025
Coastal Ice-Ocean Prediction System for the West Coast of Canada (CIOPS-West)
The Coastal Ice Ocean Prediction System (CIOPS) provides a 48 hour ocean and ice forecast over different domains (East, West, Salish Sea) four times a day at 1/36° resolution. A pseudo-analysis component is forced at the ocean boundaries by the Regional Ice Ocean Prediction System (RIOPS) forecasts and spectrally nudged to the RIOPS solution in the deep ocean. Fields from the pseudo-analysis are used to initialize the 00Z forecast, whilst the 06, 12 and 18Z forecasts use a restart files saved at hour 6 from the previous forecast. The atmospheric fluxes for both the pseudo-analysis and forecast components are provided by the High Resolution Deterministic Prediction System (HRDPS) blended both spatially and temporally with either the Global Deterministic Prediction System (GDPS) (for CIOPS-East) or an uncoupled component of the Global Deterministic Prediction System (GDPS) at 10km horizontal resolution (for CIOPS-West) for areas not covered by the HRDPS.
Coastal Ice-Ocean Prediction System for the Salish Sea region (CIOPS-SalishSea)
The Coastal Ice Ocean Prediction System (CIOPS) provides a 48 hour ocean and ice forecast over different domains (East, West, Salish Sea) four times a day at 1/36° resolution. A pseudo-analysis component is forced at the ocean boundaries by the Regional Ice Ocean Prediction System (RIOPS) forecasts and spectrally nudged to the RIOPS solution in the deep ocean. Fields from the pseudo-analysis are used to initialize the 00Z forecast, whilst the 06, 12 and 18Z forecasts use a restart files saved at hour 6 from the previous forecast. The atmospheric fluxes for both the pseudo-analysis and forecast components are provided by the High Resolution Deterministic Prediction System (HRDPS) blended both spatially and temporally with either the Global Deterministic Prediction System (GDPS) (for CIOPS-East) or an uncoupled component of the Global Deterministic Prediction System (GDPS) at 10km horizontal resolution (for CIOPS-West) for areas not covered by the HRDPS.
Coastal Ice-Ocean Prediction System for the East Coast of Canada (CIOPS-East)
The Coastal Ice Ocean Prediction System (CIOPS) provides a 48 hour ocean and ice forecast over different domains (East, West, Salish Sea) four times a day at 1/36° resolution. A pseudo-analysis component is forced at the ocean boundaries by the Regional Ice Ocean Prediction System (RIOPS) forecasts and spectrally nudged to the RIOPS solution in the deep ocean. Fields from the pseudo-analysis are used to initialize the 00Z forecast, whilst the 06, 12 and 18Z forecasts use a restart files saved at hour 6 from the previous forecast. The atmospheric fluxes for both the pseudo-analysis and forecast components are provided by the High Resolution Deterministic Prediction System (HRDPS) blended both spatially and temporally with either the Global Deterministic Prediction System (GDPS) (for CIOPS-East) or an uncoupled component of the Global Deterministic Prediction System (GDPS) at 10km horizontal resolution (for CIOPS-West) for areas not covered by the HRDPS.
eDNA metabarcoding enriches traditional trawl survey data for monitoring biodiversity in the marine environment
Marine Protected Areas require comprehensive monitoring to ensure objectives are achieved; however, monitoring natural ecosystems at scale is challenged by the biodiversity it aims to measure. Environmental DNA (eDNA) metabarcoding holds promise to address this monitoring challenge. We conducted paired sampling at 54 sites for fish and invertebrate assemblages in the Northwest Atlantic using groundfish trawls and eDNA metabarcoding of benthic seawater using four genetic markers (12S rRNA, 16S rRNA, 18S rRNA, and CO1). Compared to trawling, eDNA detected similar patterns of species turnover, larger estimates of gamma diversity, and smaller estimates of alpha diversity. A total of 63.6% (42/66) of fish species captured by trawling were detected by eDNA, along with an additional 26 species. Of the 24 missed detections by eDNA, 12 were inevitable as they lacked reference sequences. Excluding taxa assigned to higher than species level and those without a species name, 23.6% (17/72) of invertebrate species captured by trawling were detected by CO1, which detected an additional 98 species. We demonstrate that eDNA is capable of detecting patterns of community assemblage and species turnover in an offshore environment, emphasizing its strong potential for a non-invasive, comprehensive, and scalable tool for biodiversity monitoring supporting marine conservation programmes.Cite this data as: Jeffery, N., Rubidge, E., Abbott, C., Westfall, K., Stanley, R. (2024): Data of: eDNA metabarcoding enriches traditional trawl survey data for monitoring biodiversity in the marine environment.Published: August 2024. Coastal Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/43a91ba7-8025-4330-88db-db14022d729d
Species Distribution Modelling of Corals and Sponges in the Maritimes Region for Use in the Identification of Significant Benthic Areas
Effective fisheries and habitat management processes require knowledge of the distribution of areas of high ecological or biological significance. On the Scotian Shelf and Slope, a number of benthic ecologically or biologically significant areas consisting of habitat-forming species such as sponges and deep-water corals have been identified. However, knowledge of their spatial distribution is largely based on targeted surveys that are limited in their spatial extent. We used a species distribution modelling approach called random forest (RF) to predict the probability of occurrence and biomass of sponges, sea pens, and large and small gorgonian corals across the entire spatial extent of Fisheries and Oceans Canada’s (DFO) Maritimes Region. We also modelled the rare sponge Vazella pourtalesi, which forms the largest known aggregation of its kind on the Scotian Shelf. We utilized a number of data sources including DFO multispecies trawl catch data and in situ benthic imagery observations. Most models had excellent predictive capacity with cross-validated Area Under the Receiver Operating Characteristic Curve (AUC) values ranging from 0.760 to 0.977. Areas of suitable habitat were identified for each taxon and were contrasted against their known distribution and when applicable, the location of closure areas designated for their protection. Generalized additive models (GAMs) were developed to predict the biomass distribution of each taxonomic group and serve as a comparison to the RF models. The RF and GAM models provided comparable results, although GAMs provided superior predictions of biomass along the continental slope for some taxonomic groups. In the absence of data observations, the results of this study could be used to identify the potential distribution of sensitive benthic taxa for use in fisheries and habitat management applications. These results could also be used to refine significant concentrations of these taxa as identified through the kernel density analyses.Cite this data as: Beazley, Lindsay; Kenchington, Ellen; Murillo-Perez, Javier; Lirette, Camille; Guijarro-Sabaniel, Javier; McMillan, Andrew; Knudby, Anders (2019). Species Distribution Modelling of Corals and Sponges in the Maritimes Region for Use in the Identification of Significant Benthic Areas. Published July 2023. Ocean Ecosystems Science Division, Fisheries and Oceans Canada, Dartmouth, N.S. https://open.canada.ca/data/en/dataset/356e92f3-5bf3-4810-98b1-3e10cd7742aa
Inland Water Bodies Map of Canada and Neighbouring Regions at 250-m Spatial Resolution
This dataset comprises a map of inland water bodies in Canada and neighboring regions, as described by Ghayourmanesh et al. (2024). The data are mapped using the Lambert Conformal Conic (LCC) geographic projection with a spatial resolution of 250 meters. The LCC projection is frequently used as a standard projection at the Canada Centre for Remote Sensing (CCRS) (Trishchenko et al., 2016, Trishchenko, 2019). Each pixel value represents a code describing either the probability of inland water presence or land/ocean(sea) mask
Demersal fish and benthic invertebrate assemblages in the Northwest Atlantic
Marine classification schemes based on abiotic surrogates often inform regional marine conservation planning in lieu of detailed biological data. However, theses chemes may poorly represent ecologically relevant biological patterns required for effective design and management strategies. We used a community-level modeling approach to characterize and delineate representative mesoscale (tens to thousands of kilometers) assemblages of demersal fish and benthic invertebrates in the North-west Atlantic. Hierarchical clustering of species occurrence data from four regional annual multispecies trawl surveys revealed three to six groupings (predominant assemblage types) in each survey region, broadly associated with geomorphic and oceanographic features. Indicator analyses identified 3–34 emblematic taxa of each assemblage type. Random forest classifications accurately predicted assemblage dis-tributions from environmental covariates (AUC > 0.95) and identified thermal limits (annual minimum and maximum bottom temperatures) as important pre-dictors of distribution in each region. Using forecasted oceanographic conditions for the year 2075 and a regional classification model, we projected assemblage dis-tributions in the southernmost bioregion (Scotian Shelf-Bay of Fundy) under ahigh emissions climate scenario (RCP 8.5). Range expansions to the north eastare projected for assemblages associated with warmer and shallower waters of the Western Scotian Shelf over the 21st century as thermal habitat on the rela-tively cooler Eastern Scotian Shelf becomes more favorable. Community-level modeling provides a biotic-informed approach for identifying broadscale ecolog-ical structure required for the design and management of ecologically coherent, representative, well-connected networks of Marine Protected Areas. When com-bined with oceanographic forecasts, this modeling approach provides a spatial tool for assessing sensitivity and resilience to climate change, which can improve conservation planning, monitoring, and adaptive management.Cite this data as: O'Brien, J.M., Stanley, R.R.E., Jeffery, N.W., Heaslip, S.W., DiBacco, C., and Wang, Z. Demersal fish and benthic invertebrate assemblages in the Northwest Atlantic.Published: December 2024. Coastal Ecosystems Science Division, Maritimes region, Fisheries and Oceans Canada, Dartmouth NS.https://open.canada.ca/data/en/dataset/14d55ea5-b17d-478c-b9ee-6a7c04439d2b
Northeast Pacific Monthly Mean Ocean Current Climatology (October - March)
This dataset provides 1/36-degree monthly mean ocean current climatology (October - March) in the Northeast Pacific. The climatological fields are derived from hourly ocean currents for the perid from 1993 to 2020, simulated using a high-resolution Northeast Pacific Ocean Model (NEPOM).
Tell us what you think!
GEO.ca is committed to open dialogue and community building around location-based issues and
topics that matter to you.
Please send us your feedback